论文标题

在马尔可夫链建模中出现的基质方程的松弛固定点迭代

Relaxed Fixed Point Iterations for Matrix Equations Arising in Markov Chains Modeling

论文作者

Gemignani, Luca, Meini, Beatrice

论文摘要

我们提供了一些固定点迭代的加速变体,用于计算与M/G/1型Markov链相关的单侧矩阵方程的最小非负解。这些变体源自与马尔可夫链相关的Hessenberg M-Matrix的某些楼梯常规分裂。通过利用楼梯配置文件,我们引入了两步的固定点迭代。通过计算连续两个步骤获得的近似值之间的加权平均值,可以进一步加速迭代。证明了基本的两步固定点迭代及其松弛修饰的收敛性。我们的理论分析以及几个数值实验表明,所提出的变体通常优于经典迭代。

We present some accelerated variants of fixed point iterations for computing the minimal non-negative solution of the unilateral matrix equation associated with an M/G/1-type Markov chain. These variants derive from certain staircase regular splittings of the block Hessenberg M-matrix associated with the Markov chain. By exploiting the staircase profile we introduce a two-step fixed point iteration. The iteration can be further accelerated by computing a weighted average between the approximations obtained at two consecutive steps. The convergence of the basic two-step fixed point iteration and of its relaxed modification is proved. Our theoretical analysis, along with several numerical experiments show that the proposed variants generally outperform the classical iterations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源