论文标题

图像,或不进行图像:具有不希望物体的全光擦除的特定类别衍射摄像机

To image, or not to image: Class-specific diffractive cameras with all-optical erasure of undesired objects

论文作者

Bai, Bijie, Luo, Yi, Gan, Tianyi, Hu, Jingtian, Li, Yuhang, Zhao, Yifan, Mengu, Deniz, Jarrahi, Mona, Ozcan, Aydogan

论文摘要

在数字时代,隐私保护是一个日益严重的关注点,机器视觉技术在整个公共和私人环境中广泛使用。现有方法通过加密相机图像或通过数字算法掩盖/模糊信息的信息来解决这个日益增长的问题。在这里,我们演示了一种相机设计,该设计对目标对象进行特定于类的目标成像,并瞬时对其他类别的对象进行全面擦除。该衍射摄像机由使用深度学习构成的透射表面组成,以对位于其输入视野的对象的目标类别进行选择性成像。制造后,薄衍射层共同执行光学模式过滤,以准确形成属于目标数据类或类的对象的图像,同时立即擦除视图视野视野中其他数据类的对象。使用同一框架,我们还演示了特定于类的置换摄像机的设计,其中目标数据类的对象是针对全光学类特异性加密的像素置换的,而其他对象则从输出图像中不可逆地删除。使用Terahertz(THZ)波和3D打印的衍射层实验证明了类特异性衍射摄像机的成功,这些层仅选择性地对一类MNIST手写数字数据集进行了选择,从而全面擦除了另一个手写笔记。这种衍射摄像头设计可以缩放到电磁频谱的不同部分,包括,例如可见和红外波长,为具有隐私的数字摄像机和特定于任务特定的数据有效成像提供了变革性的机会。

Privacy protection is a growing concern in the digital era, with machine vision techniques widely used throughout public and private settings. Existing methods address this growing problem by, e.g., encrypting camera images or obscuring/blurring the imaged information through digital algorithms. Here, we demonstrate a camera design that performs class-specific imaging of target objects with instantaneous all-optical erasure of other classes of objects. This diffractive camera consists of transmissive surfaces structured using deep learning to perform selective imaging of target classes of objects positioned at its input field-of-view. After their fabrication, the thin diffractive layers collectively perform optical mode filtering to accurately form images of the objects that belong to a target data class or group of classes, while instantaneously erasing objects of the other data classes at the output field-of-view. Using the same framework, we also demonstrate the design of class-specific permutation cameras, where the objects of a target data class are pixel-wise permuted for all-optical class-specific encryption, while the other objects are irreversibly erased from the output image. The success of class-specific diffractive cameras was experimentally demonstrated using terahertz (THz) waves and 3D-printed diffractive layers that selectively imaged only one class of the MNIST handwritten digit dataset, all-optically erasing the other handwritten digits. This diffractive camera design can be scaled to different parts of the electromagnetic spectrum, including, e.g., the visible and infrared wavelengths, to provide transformative opportunities for privacy-preserving digital cameras and task-specific data-efficient imaging.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源