论文标题

复杂性 - 最佳和无参数的一阶方法,用于查找复合优化问题的固定点

Complexity-optimal and parameter-free first-order methods for finding stationary points of composite optimization problems

论文作者

Kong, Weiwei

论文摘要

本文开发和分析了一种加速近端下降方法,用于查找非凸复合综合优化问题的固定点。目标函数是$ f+h $的形式,其中$ h $是适当的封闭凸功能,$ f $是$ h $的域上的可区分函数,而$ \ nabla f $是$ h $的域上的lipschitz。这种方法的主要优点是它是“无参数”的,因为它不需要$ \ nabla f $的Lipschitz常数或任何$ f $的全球拓扑属性。结果表明,所提出的方法可以在凸面和非convex设置中获得$ \ varepsilon $ -AppRoximate固定点,具有最佳的迭代复杂性范围,最佳,均超过$ \ varepsilon $。还进行了一些讨论,讨论如何在其他现有优化框架中利用所提出的方法,例如Min-Max平滑框架和用于约束编程的惩罚框架,以创建更专业的无参数方法。最后,提出了数值实验以支持该方法的实际生存能力。

This paper develops and analyzes an accelerated proximal descent method for finding stationary points of nonconvex composite optimization problems. The objective function is of the form $f+h$ where $h$ is a proper closed convex function, $f$ is a differentiable function on the domain of $h$, and $\nabla f$ is Lipschitz continuous on the domain of $h$. The main advantage of this method is that it is "parameter-free" in the sense that it does not require knowledge of the Lipschitz constant of $\nabla f$ or of any global topological properties of $f$. It is shown that the proposed method can obtain an $\varepsilon$-approximate stationary point with iteration complexity bounds that are optimal, up to logarithmic terms over $\varepsilon$, in both the convex and nonconvex settings. Some discussion is also given about how the proposed method can be leveraged in other existing optimization frameworks, such as min-max smoothing and penalty frameworks for constrained programming, to create more specialized parameter-free methods. Finally, numerical experiments are presented to support the practical viability of the method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源