论文标题
基于高电荷离子的光原子钟
An Optical Atomic Clock Based on a Highly Charged Ion
论文作者
论文摘要
光原子时钟是有史以来最准确的测量设备,并且在基本科学技术中发现了许多应用。长期以来,将高电荷离子(HCI)用作最高精度的新参考和基本物理的精确测试一直是由于其极端原子特性的动机,并且与单次电荷离子或中性原子相比,其极端原子特性降低了对外部电和磁场扰动的敏感性。在这里,我们基于AR $^{13+} $中的光学磁极转换,介绍了这一新的时钟的第一个实现。它的全面评估的系统不确定性为$ 2.2 \ times10^{ - 17} $与运行中许多光学时钟相当。从时钟比较中,我们分别对绝对过渡频率和同位素移动的不确定性($^{40} $ vs. $^{36} $ ar)提高了八个和九个数量级。这些测量值使我们能够在很大程度上探讨未开发的量子电动核电弯,这是对同位素移位的改进计算的一部分,这将上一个理论的不确定性降低了三倍。这项工作确立了HCI中禁止的光学转变,作为尖端光学时钟和未来对标准模型以外物理的高敏性搜索的参考。
Optical atomic clocks are the most accurate measurement devices ever constructed and have found many applications in fundamental science and technology. The use of highly charged ions (HCI) as a new class of references for highest accuracy clocks and precision tests of fundamental physics has long been motivated by their extreme atomic properties and reduced sensitivity to perturbations from external electric and magnetic fields compared to singly charged ions or neutral atoms. Here we present the first realisation of this new class of clocks, based on an optical magnetic-dipole transition in Ar$^{13+}$. Its comprehensively evaluated systematic frequency uncertainty of $2.2\times10^{-17}$ is comparable to that of many optical clocks in operation. From clock comparisons we improve by eight and nine orders of magnitude upon the uncertainties for the absolute transition frequency and isotope shift ($^{40}$Ar vs. $^{36}$Ar), respectively. These measurements allow us to probe the largely unexplored quantum electrodynamic nuclear recoil, presented as part of improved calculations of the isotope shift which reduce the uncertainty of previous theory by a factor of three. This work establishes forbidden optical transitions in HCI as references for cutting-edge optical clocks and future high-sensitivity searches for physics beyond the standard model.