论文标题
引导4D $ \ MATHCAL {N} = 2 $量规理论:SQCD的情况
Bootstrapping 4d $\mathcal{N}=2$ gauge theories: the case of SQCD
论文作者
论文摘要
我们在4D $ \ MATHCAL {N} = 2 $保守的磁场理论(CFTS)和质量变形球体自由能的衍生物中,在4D $ \ MATHCAL {n}中的某些积分中获得了确切的关系,可以使用超对称性定位为仪表理论计算。对于具有大于1的风味组的共形量规理论,至少有两个这样的综合约束,然后可以将其与数值的保形引导程序结合到绑定的CFT数据,这是复杂量规耦合$τ$的函数的函数。我们将此策略应用于$ su(2)$ constormal sqcd与风味组$ so(8)$的情况下,我们在其中计算符合自由理论限制的$τ$的不受保护的缩放尺寸的界限,并表现出预期的混合,并在$ sl(2,2,\ nathbb {z})$ duality Group和$ so $ so(8)之间进行预期混合。
We derive exact relations between certain integrals of the conserved flavor current four point function in 4d $\mathcal{N}=2$ conformal field theories (CFTs) and derivatives of the mass deformed sphere free energy, which can be computed exactly for gauge theories using supersymmetric localization. For conformal gauge theories with flavor groups of rank greater than one, there are at least two such integrated constraints, which can then be combined with the numerical conformal bootstrap to bound CFT data as a function of the complexified gauge coupling $τ$. We apply this strategy to the case of $SU(2)$ conformal SQCD with flavor group $SO(8)$, where we compute bounds on unprotected scaling dimensions as a function of $τ$ that match the free theory limit, and exhibit the expected mixing between the action of the $SL(2,\mathbb{Z})$ duality group and $SO(8)$ triality.