论文标题
M矮人周围的RV检测行星:核心积聚模型的挑战
RV-detected planets around M dwarfs: Challenges for core accretion models
论文作者
论文摘要
行星的形成对原月球磁盘的条件敏感,对于该磁盘的条件,缩放定律是恒星质量的函数。我们旨在测试这些趋势周围观察到的行星群体是否可以通过这些趋势来解释,或者是否需要单独的地层渠道来解释。 我们通过面对一个最先进的行星种群综合模型与竖琴和卡梅内斯径向速度(RV)调查观察到的M矮人周围的行星样本来解决这个问题。为了解决检测偏见,我们对实际的RV数据进行了注射和检索实验,以产生按照核心积聚范式模拟的行星的合成观察结果。 这些模拟可牢固地产生先前报道的岩石行星在M矮人周围的高度出现,并且通常与它们的行星质量功能一致。相比之下,我们的模拟不能再现恒星周围巨型行星的种群,而不是0.5太阳能块。这可能表明,围绕最小恒星的巨型行星的替代形成通道无法用当前的核心积聚理论来解释。我们进一步发现短期行星的检测率有出色的质量依赖性。我们的样品中缺乏较早型星($ M_ \ star \ gtrsim 0.4 \,M_ \ odot $)周围的近距离行星,我们的模型仍无法解释,并表明不同光谱亚型磁盘中的相似行星迁移屏障。 这两种差异都可以归因于我们对新生M型系统中星球迁移的理解中的差距。它们强调了不同光谱亚型的年轻恒星周围的不同条件,并在研究行星形成时考虑了这些差异的重要性。
Planet formation is sensitive to the conditions in protoplanetary disks, for which scaling laws as a function of stellar mass are known. We aim to test whether the observed population of planets around low-mass stars can be explained by these trends, or if separate formation channels are needed. We address this question by confronting a state-of-the-art planet population synthesis model with a sample of planets around M dwarfs observed by the HARPS and CARMENES radial velocity (RV) surveys. To account for detection biases, we performed injection and retrieval experiments on the actual RV data to produce synthetic observations of planets that we simulated following the core accretion paradigm. These simulations robustly yield the previously reported high occurrence of rocky planets around M dwarfs and generally agree with their planetary mass function. In contrast, our simulations cannot reproduce a population of giant planets around stars less massive than 0.5 solar masses. This potentially indicates an alternative formation channel for giant planets around the least massive stars that cannot be explained with current core accretion theories. We further find a stellar mass dependency in the detection rate of short-period planets. A lack of close-in planets around the earlier-type stars ($M_\star \gtrsim 0.4\, M_\odot$) in our sample remains unexplained by our model and indicates dissimilar planet migration barriers in disks of different spectral subtypes. Both discrepancies can be attributed to gaps in our understanding of planet migration in nascent M dwarf systems. They underline the different conditions around young stars of different spectral subtypes, and the importance of taking these differences into account when studying planet formation.