论文标题
由栅极驱动的氢插入在电荷密度波化合物1T-tise2中引起的超导性
Superconductivity induced by gate-driven hydrogen intercalation in the charge-density-wave compound 1T-TiSe2
论文作者
论文摘要
氢(h)在赫德里德斯在梅加巴尔压力下的近距离温度超导性中起关键作用。这表明h掺杂也可能对材料的电子和声音光谱在环境压力下产生相似的影响。在这里,我们通过离子液体液体驱动的H互插入的二烷基电子基态(1T-TISE $ _2 $)的电子基态的非易失性控制。这种质子化诱导了一个超导相,并在大多数相图中与电荷密度波一起观察到,几乎与掺杂无兴奋剂无关的过渡温度。与通过铜,锂和静电掺杂相比,H诱导的超导阶段本质上可能是无间隙的和多频段的,本质上是多带的。从头开始计算表明,高浓度的H掺杂剂会诱导带状结构的完整重建,尽管电子和高频H声子之间几乎没有耦合,但这种独特的行为得到了支持。我们的发现提供了一种有前途的方法,可以通过栅极控制的质子化来设计过渡金属二核苷剂和其他分层材料的基础状态。
Hydrogen (H) plays a key role in the near-to-room temperature superconductivity of hydrides at megabar pressures. This suggests that H doping could have similar effects on the electronic and phononic spectra of materials at ambient pressure as well. Here, we demonstrate the non-volatile control of the electronic ground state of titanium diselenide (1T-TiSe$_2$) via ionic liquid gating-driven H intercalation. This protonation induces a superconducting phase, observed together with a charge-density wave through most of the phase diagram, with nearly doping-independent transition temperatures. The H-induced superconducting phase is possibly gapless-like and multi-band in nature, in contrast with those induced in TiSe$_2$ via copper, lithium, and electrostatic doping. This unique behavior is supported by ab initio calculations showing that high concentrations of H dopants induce a full reconstruction of the bandstructure, although with little coupling between electrons and high-frequency H phonons. Our findings provide a promising approach for engineering the ground state of transition metal dichalcogenides and other layered materials via gate-controlled protonation.