论文标题

主要保留问题

Prime Holdout Problems

论文作者

Milkert, Max, Ruchti, Alex, Yoder, Josiah

论文摘要

本文引入了Prime Holdout问题,这是与Collat​​z猜想有关的问题类别。应用线性函数后,没有删除一组有限的素数因素,而是指定要保留的一组素数。有限的和无限的保留问题都给出了所有正整数融合到1的证明。据推测,有限的保留问题不能因任何起始值而差异,这对Collat​​z猜想中的不同序列具有影响。

This paper introduces prime holdout problems, a problem class related to the Collatz conjecture. After applying a linear function, instead of removing a finite set of prime factors, a holdout problem specifies a set of primes to be retained. A proof that all positive integers converge to 1 is given for both a finite and an infinite holdout problem. It is conjectured that finite holdout problems cannot diverge for any starting value, which has implications for divergent sequences in the Collatz conjecture.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源