论文标题
主要保留问题
Prime Holdout Problems
论文作者
论文摘要
本文引入了Prime Holdout问题,这是与Collatz猜想有关的问题类别。应用线性函数后,没有删除一组有限的素数因素,而是指定要保留的一组素数。有限的和无限的保留问题都给出了所有正整数融合到1的证明。据推测,有限的保留问题不能因任何起始值而差异,这对Collatz猜想中的不同序列具有影响。
This paper introduces prime holdout problems, a problem class related to the Collatz conjecture. After applying a linear function, instead of removing a finite set of prime factors, a holdout problem specifies a set of primes to be retained. A proof that all positive integers converge to 1 is given for both a finite and an infinite holdout problem. It is conjectured that finite holdout problems cannot diverge for any starting value, which has implications for divergent sequences in the Collatz conjecture.