论文标题
对暗物质歼灭和衰减的限制因附近宇宙的大规模结构而腐烂
Constraints on dark matter annihilation and decay from the large-scale structure of the nearby universe
论文作者
论文摘要
可以通过从它们腐烂或歼灭成的物种来检测衰减或消灭暗物质颗粒。这通常是通过对特定深色物质物体(例如银河系晕,矮人矮人和附近群体)进行建模的通量来完成的。但是,这些对象也有望从重型过程中产生明显的发射,并且分析在大多数天空中都丢弃伽马射线数据。在这里,我们通过使用Galaxies Algorithm的Bayesian Origin Reponstruction生产的一套约束$ N $ BODY仿真(CSIBORG),从$ \ sim $ 200 MPC内的大型$ \ sim $ 200 MPC构建全套模板。在这种重建,小规模的结构和描述天体物理贡献对观察到的伽马射线天空的贡献的参数中,在不确定性的情况下进行边缘化,我们将来自费米大面积望远镜的观察结果进行比较,以限制黑物质歼灭横截面和衰减速率,并通过Markov Chail Monte Carlo Carlo Carlo分析。我们排除了所有$ s $ - 波的灭绝的热液体横截面。我们推断出与暗物质衰减相同的空间分布的伽玛射线天空的贡献。尽管这可能是由于暗物质通过这些频道的衰减速率$γ\约6 \ times 10^{ - 28} {\ rm \,s^{ - 1}} $,但我们发现,INDEX $ p = -2.75^{+0.71} _ {+0.71} _ {+0.46} $ iS preft of bary的p = -2.75^{+0.71} _ preaw spectrum p = -2.75^{+0.71}。
Decaying or annihilating dark matter particles could be detected through gamma-ray emission from the species they decay or annihilate into. This is usually done by modelling the flux from specific dark matter-rich objects such as the Milky Way halo, Local Group dwarfs, and nearby groups. However, these objects are expected to have significant emission from baryonic processes as well, and the analyses discard gamma-ray data over most of the sky. Here we construct full-sky templates for gamma-ray flux from the large-scale structure within $\sim$200 Mpc by means of a suite of constrained $N$-body simulations (CSiBORG) produced using the Bayesian Origin Reconstruction from Galaxies algorithm. Marginalising over uncertainties in this reconstruction, small-scale structure, and parameters describing astrophysical contributions to the observed gamma-ray sky, we compare to observations from the Fermi Large Area Telescope to constrain dark matter annihilation cross sections and decay rates through a Markov Chain Monte Carlo analysis. We rule out the thermal relic cross section for $s$-wave annihilation for all $m_χ\lesssim 7 {\rm \, GeV}/c^2$ at 95\% confidence if the annihilation produces gluons or quarks less massive than the bottom quark. We infer a contribution to the gamma-ray sky with the same spatial distribution as dark matter decay at $3.3σ$. Although this could be due to dark matter decay via these channels with a decay rate $Γ\approx 6 \times 10^{-28} {\rm \, s^{-1}}$, we find that a power-law spectrum of index $p=-2.75^{+0.71}_{-0.46}$, likely of baryonic origin, is preferred by the data.