论文标题

特权单词数量的上限

Upper bound for the number of privileged words

论文作者

Rukavicka, Josef

论文摘要

如果$ \ vert w \ vert <\ vert u \ vert $和$ w $是$ u $的一个非空词$ w $是一个单词$ u $的a \ emph {border},既是前缀又是$ u $的后缀。如果$ \ vert u \ vert \ leq 1 $或$ u $具有特权边框$ w $,则单词$ u $是\ emph {privileged},如果$ u $在$ u $中出现了两次。 Peltomäki(2016)提出了以下开放问题:``给出$ b(n)$''的非平凡的上限,其中$ b(n)$表示长度$ n $的特权单词数量。 令$ \ ln^{[0]} {(n)} = n $,然后让$ \ ln^{[[j]} {(n)} = \ ln {(\ ln^{[j-1]} {[J-1]} {(n)}} $,其中$ j,n $是正整数。我们表明,如果$ q> 1 $是字母的大小,而$ j \ geq 3 $是整数,那么有常数$α_j$和$ n_j $,这样就可以\ [b(n)\ leq α_j\ frac {q^{n} \ sqrt {\ ln {n}}}}} {\ sqrt {n}}} \ ln^{[j]} {(n)} \ prod_ {i = 2}^{j-1} \ sqrt {\ ln^{[i]}(n)} \ mbox {,其中} n \ geq n_j \ mbox {。} \]此结果改善了Rukavicka的上限(2020)。

A non-empty word $w$ is a \emph{border} of a word $u$ if $\vert w\vert<\vert u\vert$ and $w$ is both a prefix and a suffix of $u$. A word $u$ is \emph{privileged} if $\vert u\vert\leq 1$ or if $u$ has a privileged border $w$ that appears exactly twice in $u$. Peltomäki (2016) presented the following open problem: ``Give a nontrivial upper bound for $B(n)$'', where $B(n)$ denotes the number of privileged words of length $n$. Let $\ln^{[0]}{(n)}=n$ and let $\ln^{[j]}{(n)}=\ln{(\ln^{[j-1]}{(n)})}$, where $j,n$ are positive integers. We show that if $q>1$ is a size of the alphabet and $j\geq 3$ is an integer then there are constants $α_j$ and $n_j$ such that \[B(n)\leq α_j\frac{q^{n}\sqrt{\ln{n}}}{\sqrt{n}}\ln^{[j]}{(n)}\prod_{i=2}^{j-1}\sqrt{\ln^{[i]}(n)}\mbox{, where }n\geq n_j\mbox{.}\] This result improves the upper bound of Rukavicka (2020).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源