论文标题

Gardnet:颜色底面图像中的青光眼分类的强大多视图网络

GARDNet: Robust Multi-View Network for Glaucoma Classification in Color Fundus Images

论文作者

Mahrooqi, Ahmed Al, Medvedev, Dmitrii, Muhtaseb, Rand, Yaqub, Mohammad

论文摘要

青光眼是最严重的眼部疾病之一,其特征是快速进展,导致不可逆的失明。通常,由于疾病早期缺乏明显的症状,人们的视力已经显着降解时,就会进行诊断。人口的常规青光眼筛查应改善早期检测,但是,由于手动诊断对有限的专家施加的过多负载,词源检查的理想频率通常是不可行的。考虑到检测青光眼的基本方法是分析视轴与光检查比率的底面图像,机器学习算法可以为图像处理和分类提供复杂的方法。在我们的工作中,我们提出了一种先进的图像预处理技术,并结合了深层分类模型的多视图网络,以对青光眼进行分类。我们的青光眼自动化视网膜检测网络(Gardnet)已在鹿特丹Eyepacs Airogs数据集上成功测试,AUC为0.92,然后在RIM-ONE DL数据集上进行了微调和测试,AUC的AUC为0.9308的AUC超过了0.9272的现状。我们的代码可在https://github.com/ahmed1996said/gardnet上找到

Glaucoma is one of the most severe eye diseases, characterized by rapid progression and leading to irreversible blindness. It is often the case that diagnostics is carried out when one's sight has already significantly degraded due to the lack of noticeable symptoms at early stage of the disease. Regular glaucoma screenings of the population shall improve early-stage detection, however the desirable frequency of etymological checkups is often not feasible due to the excessive load imposed by manual diagnostics on limited number of specialists. Considering the basic methodology to detect glaucoma is to analyze fundus images for the optic-disc-to-optic-cup ratio, Machine Learning algorithms can offer sophisticated methods for image processing and classification. In our work, we propose an advanced image pre-processing technique combined with a multi-view network of deep classification models to categorize glaucoma. Our Glaucoma Automated Retinal Detection Network (GARDNet) has been successfully tested on Rotterdam EyePACS AIROGS dataset with an AUC of 0.92, and then additionally fine-tuned and tested on RIM-ONE DL dataset with an AUC of 0.9308 outperforming the state-of-the-art of 0.9272. Our code is available on https://github.com/ahmed1996said/gardnet

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源