论文标题

在非铁质体系统中动态量子相变的异常

Anomaly in dynamical quantum phase transition in non-Hermitian system with extended gapless phases

论文作者

Mondal, Debashish, Nag, Tanay

论文摘要

动态量子相变(DQPTS)和相关的绕组数已在上下文中进行了广泛的研究。我们考虑了$ p $ - 波超导体的非热类似物,在存在现场或超导损失项的情况下,以复杂的跳跃为支持Hermitian Gapless阶段。这使我们能够研究非遗传学无间隙相外,非富裕无间隙相对DQPT的影响。我们的发现表明,对基本的哈密顿量的轮廓分析(封闭了原点和/或特殊点)可以预测除无间隙阶段中的淬灭之外的DQPT的出现。对于Hermitian的案例,最初和最后的汉密尔顿人都是隐士,我们发现非单调的整数跳跃是缠绕的数字,这是那里无处不在的标志。对于混合案例,初始和最后一个汉密尔顿人分别是隐居和非热者,蜿蜒的数字除了非单调的整数跳跃外,还显示了整数尖峰。对于最初和最后一个汉密尔顿人的非热案例,均为非热者,蜿蜒的数字显示出了半场有损的超级能力性,而没有任何遗产类似物。另一方面,观察到有损耗的化学潜力的整数跳跃数。我们通过将它们与Fisher Zeros的剖面以及特殊点和/或原始原点的数量联系起来来理解我们的发现。

The dynamical quantum phase transitions (DQPTs) and the associated winding numbers have been extensively studied in the context Hermitian system. We consider the non-Hermitian analogue of $p$-wave superconductor, supporting Hermitian gapless phase with complex hopping, in presence of on-site or superconducting loss term. This allows us to investigate the effect of non-Hermitian gapless phases on the DQPTs in addition to the Hermitian gapless phases. Our findings indicate that contour analysis of the underlying Hamiltonian, enclosing the origin and/or exceptional points, can predict the occurrences of DQPTs except the quench within the gapless phases. For the Hermitian case with initial and final Hamiltonians both being Hermitian, we find non-monotonic integer jump for the winding number as the hallmark signature of the gapless phase there. For the hybrid case with initial and final Hamiltonians being Hermitian and non-Hermitian respectively, winding number exhibits integer spike in addition to the non-monotonic integer jumps. For the non-Hermitian case with initial and final Hamiltonians both being non-Hermitian, the winding number show half-integer jumps for lossy superconcuctivity that does not have any Hermitian analogue. On the other hand, the integer jumps in winding number is observed for lossy chemical potential. We understand our findings by connecting them with the profile of Fisher zeros and number of exceptional points and/or origin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源