论文标题

快速随机的复合材料最小化和并行的加速弗兰克 - 沃尔夫算法

Fast Stochastic Composite Minimization and an Accelerated Frank-Wolfe Algorithm under Parallelization

论文作者

Dubois-Taine, Benjamin, Bach, Francis, Berthet, Quentin, Taylor, Adrien

论文摘要

我们考虑最小化两个凸函数的总和的问题。其中一个功能具有LIPSCHITZ连续梯度,可以通过随机甲壳访问,而另一个则可以“简单”。我们提供Bregman型算法,在功能值中加速收敛到包含最小值的球。该球的半径取决于问题依赖性常数,包括随机甲骨文的方差。我们进一步表明,这种算法的设置自然会导致Frank-Wolfe在并行化下达到加速度的变体。更确切地说,当最大程度地减少有界域上的平稳凸功能时,我们表明,只有仅通过访问原始功能的$ tilde {o}(1/ \sqrtε)$迭代才能在$ \ tilde {o}中实现$ε$原始缝隙(预期),仅通过访问原始函数的梯度和$ o(1/ ^ $ o o(1/ c)的范围。我们说明了合成数值实验的这种快速收敛性。

We consider the problem of minimizing the sum of two convex functions. One of those functions has Lipschitz-continuous gradients, and can be accessed via stochastic oracles, whereas the other is "simple". We provide a Bregman-type algorithm with accelerated convergence in function values to a ball containing the minimum. The radius of this ball depends on problem-dependent constants, including the variance of the stochastic oracle. We further show that this algorithmic setup naturally leads to a variant of Frank-Wolfe achieving acceleration under parallelization. More precisely, when minimizing a smooth convex function on a bounded domain, we show that one can achieve an $ε$ primal-dual gap (in expectation) in $\tilde{O}(1/ \sqrtε)$ iterations, by only accessing gradients of the original function and a linear maximization oracle with $O(1/\sqrtε)$ computing units in parallel. We illustrate this fast convergence on synthetic numerical experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源