论文标题
确定性的统治集大规模并行算法
Deterministic Massively Parallel Algorithms for Ruling Sets
论文作者
论文摘要
在本文中,我们提出了一个确定性$ O(\ log \ log n)$ - 在具有$ \ tilde {o}(n)$ memory的大规模并行计算模型中的2条集合问题中,圆形算法;该算法还以$ o(\ log \ log n)$ rounds在拥挤的集团模型中运行。这比这些模型的最快已知的确定性2式设置算法的速度要快,这仅仅是$ o(\logδ)$ - 圆形确定性最大独立集算法,这是由于Czumaj,Davies和Parter引起的(SPAA 2020)。我们的结果是通过将Kothapalli和Pemmaraju的2条集合算法取代(FSTTCS 2012)获得的。
In this paper we present a deterministic $O(\log\log n)$-round algorithm for the 2-ruling set problem in the Massively Parallel Computation model with $\tilde{O}(n)$ memory; this algorithm also runs in $O(\log\log n)$ rounds in the Congested Clique model. This is exponentially faster than the fastest known deterministic 2-ruling set algorithm for these models, which is simply the $O(\log Δ)$-round deterministic Maximal Independent Set algorithm due to Czumaj, Davies, and Parter (SPAA 2020). Our result is obtained by derandomizing the 2-ruling set algorithm of Kothapalli and Pemmaraju (FSTTCS 2012).