论文标题

您的模型是否合理地对实体进行了分类?实体打字中的诊断和减轻伪造相关性

Does Your Model Classify Entities Reasonably? Diagnosing and Mitigating Spurious Correlations in Entity Typing

论文作者

Xu, Nan, Wang, Fei, Li, Bangzheng, Dong, Mingtao, Chen, Muhao

论文摘要

实体键入旨在预测一个或多个词来描述句子中特定提及的类型。由于从表面模式到注释的实体标签和偏见训练的快捷方式,现有实体键入模型会遇到虚假相关性的问题。为了全面研究实体分型方法的忠诚和可靠性,我们首先系统地定义了主要从虚假相关性反映的不同种类的模型偏见。特别是,我们确定了六种类型的现有模型偏见,包括提及的偏置偏见,词汇重叠偏置,名为实体偏见,代词偏见,依赖关系偏见和过度概括性偏差。为了减轻模型偏见,我们引入了反事实数据增强方法。通过增强原始培训套件及其同行,模型被迫完全理解句子并发现实体打字的基本提示,而不是依靠伪造的快捷方式。 UFET数据集上的实验结果表明,我们的反事实数据增强方法有助于改善对原始测试集和依据的测试集始终如一地性能的不同实体键入模型的概括。

Entity typing aims at predicting one or more words that describe the type(s) of a specific mention in a sentence. Due to shortcuts from surface patterns to annotated entity labels and biased training, existing entity typing models are subject to the problem of spurious correlations. To comprehensively investigate the faithfulness and reliability of entity typing methods, we first systematically define distinct kinds of model biases that are reflected mainly from spurious correlations. Particularly, we identify six types of existing model biases, including mention-context bias, lexical overlapping bias, named entity bias, pronoun bias, dependency bias, and overgeneralization bias. To mitigate model biases, we then introduce a counterfactual data augmentation method. By augmenting the original training set with their debiased counterparts, models are forced to fully comprehend sentences and discover the fundamental cues for entity typing, rather than relying on spurious correlations for shortcuts. Experimental results on the UFET dataset show our counterfactual data augmentation approach helps improve generalization of different entity typing models with consistently better performance on both the original and debiased test sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源