论文标题

重新平滑:在使用数据增强培训时检测和利用OOD样品

ReSmooth: Detecting and Utilizing OOD Samples when Training with Data Augmentation

论文作者

Wang, Chenyang, Jiang, Junjun, Zhou, Xiong, Liu, Xianming

论文摘要

数据增强(DA)是一种广泛使用的技术,用于增强深层神经网络的训练。实现最先进性能的最新技术始终满足增强培训样本中多样性的需求。但是,具有较高多样性的增强策略通常会引入分布式(OOD)增强样品,因此这些样本会损害性能。为了减轻这个问题,我们提出了Resmooth,该框架首先在增强样品中检测到OOD样品,然后利用它们。要具体而言,我们首先使用高斯混合模型来拟合原始样品和增强样品的损失分布,并因此将这些样品分为分配(ID)样品和OOD样品。然后,我们开始一个新的培训,将ID和OOD样品与不同的平滑标签合并。通过不平等地处理ID样品和OOD样品,我们可以更好地利用各种增强数据。此外,我们将重新安装框架与负面数据增强策略结合在一起。通过正确处理其故意创建的OOD样本,负面数据增强的分类性能在很大程度上得到了改善。几个分类基准的实验表明,可以轻松地扩展重新光滑,以扩展到现有的增强策略(例如Randaugment,Rotate和Jigsaw)并改进它们。我们的代码可在https://github.com/chenyang4/resmooth上找到。

Data augmentation (DA) is a widely used technique for enhancing the training of deep neural networks. Recent DA techniques which achieve state-of-the-art performance always meet the need for diversity in augmented training samples. However, an augmentation strategy that has a high diversity usually introduces out-of-distribution (OOD) augmented samples and these samples consequently impair the performance. To alleviate this issue, we propose ReSmooth, a framework that firstly detects OOD samples in augmented samples and then leverages them. To be specific, we first use a Gaussian mixture model to fit the loss distribution of both the original and augmented samples and accordingly split these samples into in-distribution (ID) samples and OOD samples. Then we start a new training where ID and OOD samples are incorporated with different smooth labels. By treating ID samples and OOD samples unequally, we can make better use of the diverse augmented data. Further, we incorporate our ReSmooth framework with negative data augmentation strategies. By properly handling their intentionally created OOD samples, the classification performance of negative data augmentations is largely ameliorated. Experiments on several classification benchmarks show that ReSmooth can be easily extended to existing augmentation strategies (such as RandAugment, rotate, and jigsaw) and improve on them. Our code is available at https://github.com/Chenyang4/ReSmooth.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源