论文标题

通过生成对抗网络的学习分布:近似和概括

Learning Distributions by Generative Adversarial Networks: Approximation and Generalization

论文作者

Yang, Yunfei

论文摘要

我们通过分析这些模型的收敛速率来研究从有限样本中学习概率分布的生成对抗网络(GAN)的学习概率分布的程度。我们的分析基于一种新的Oracle不平等,将GAN的估计误差分解为歧视器和生成器近似错误,概括误差和优化误差。为了估计鉴别近似误差,我们通过relu神经网络在近似Hölder函数上建立误差界限,在网络的Lipschitz常数上具有明确的上限或权重的标准约束。对于发电机近似误差,我们表明神经网络可以将低维源分布近似转换为高维目标分布,并通过神经网络的宽度和深度绑定了这种近似误差。将近似结果与神经网络的概括从统计学习理论结合起来,我们在各种环境中建立了gan的收敛速率,当误差通过通过Hölder类定义的积分概率指标的集合来衡量,包括WasserStein距离,包括特殊情况。特别是,对于集中在低维集合周围的分布,我们表明gan的收敛速率不取决于高环境维度,而是依赖于较低的内在维度。

We study how well generative adversarial networks (GAN) learn probability distributions from finite samples by analyzing the convergence rates of these models. Our analysis is based on a new oracle inequality that decomposes the estimation error of GAN into the discriminator and generator approximation errors, generalization error and optimization error. To estimate the discriminator approximation error, we establish error bounds on approximating Hölder functions by ReLU neural networks, with explicit upper bounds on the Lipschitz constant of the network or norm constraint on the weights. For generator approximation error, we show that neural network can approximately transform a low-dimensional source distribution to a high-dimensional target distribution and bound such approximation error by the width and depth of neural network. Combining the approximation results with generalization bounds of neural networks from statistical learning theory, we establish the convergence rates of GANs in various settings, when the error is measured by a collection of integral probability metrics defined through Hölder classes, including the Wasserstein distance as a special case. In particular, for distributions concentrated around a low-dimensional set, we show that the convergence rates of GANs do not depend on the high ambient dimension, but on the lower intrinsic dimension.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源