论文标题

在Hermitian Eisenstein系列第二级

On Hermitian Eisenstein series of degree 2

论文作者

Hauffe-Waschbüsch, Adrian, Krieg, Aloys, Williams, Brandon

论文摘要

我们考虑了Hermitian Eisenstein系列$ e^{(\ Mathbb {k})} _ k $ $ 2 $ 2 $和重量$ k $与虚构的Quadratic数字$ \ MATHBB {K k} $相关,并确定$ \ \ Mathbb {k} $对其Arithmetic and the Fruenditiations的影响。我们发现他们满足了身份$ e^{{(\ Mathbb {k})}}^2} _4 = e^{{((\ Mathbb {k}}} _ 8 $,这是Siegel Modular Modular of度数$ 2 $,并且仅在$ \ Mathbb {K} k}} = { (\ sqrt {-3})$。作为一个应用程序,我们表明Eisenstein系列$ e^{(\ Mathbb {k})} _ k $,$ k = 4,6,8,10,12 $在$ \ Mathbb {k} \ neq \ neq \ Mathbb {q}(q}(q}(q}(q}(Q}(Q}(\ sqrt))时, Siegel和Hermitian对Siegel半空间的限制之间的差异是Maass空间中的尖端形式,其重量足够大。但是,当重量固定时,我们会看到它趋于$ 0 $,因为判别倾向于$ - \ infty $。最后,我们表明这些形式在Maass Spezialschar中生成了尖峰形式的空间作为Hecke代数上的模块,因为$ \ Mathbb {k} $在虚构的Quadratic数字字段上有所不同。

We consider the Hermitian Eisenstein series $E^{(\mathbb{K})}_k$ of degree $2$ and weight $k$ associated with an imaginary-quadratic number field $\mathbb{K}$ and determine the influence of $\mathbb{K}$ on the arithmetic and the growth of its Fourier coefficients. We find that they satisfy the identity $E^{{(\mathbb{K})}^2}_4 = E^{{(\mathbb{K})}}_8$, which is well-known for Siegel modular forms of degree $2$, if and only if $\mathbb{K} = \mathbb{Q} (\sqrt{-3})$. As an application, we show that the Eisenstein series $E^{(\mathbb{K})}_k$, $k=4,6,8,10,12$ are algebraically independent whenever $\mathbb{K}\neq \mathbb{Q}(\sqrt{-3})$. The difference between the Siegel and the restriction of the Hermitian to the Siegel half-space is a cusp form in the Maass space that does not vanish identically for sufficiently large weight; however, when the weight is fixed, we will see that it tends to $0$ as the discriminant tends to $-\infty$. Finally, we show that these forms generate the space of cusp forms in the Maass Spezialschar as a module over the Hecke algebra as $\mathbb{K}$ varies over imaginary-quadratic number fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源