论文标题
端到端的多模式事实检查和解释生成:具有挑战性的数据集和模型
End-to-End Multimodal Fact-Checking and Explanation Generation: A Challenging Dataset and Models
论文作者
论文摘要
我们提出了端到端的多模式事实检查和解释的生成,其中输入是一种主张,大量网络来源,包括文章,图像,图像,视频和推文,目标是通过检索索赔的真实性来检索索赔的真实性,并提供相关的真实性标签(例如,支持,反驳,不足,统治),以及统治的信息,并宣扬了一定的陈述,并分解了一个陈述,并构成了一份句子和一份句子,并构成了一份句子和一份句子,并构成了一份句子和一份句子,并构成了一份句子和一份句子,并见名是一份句子和一份句子,并见名和一份句子和一份句子和一定的句子和一定的句子和一定的句子和一定的句子和一定的句子,并构成了一份见名。为了支持这项研究,我们构建了Mocheg,这是一个由15,601项主张组成的大规模数据集,其中每个索赔都带有真实性标签和统治声明,以及33,880个文本段落和12,112张图像总共证明。为了在Mocheg上建立基线表现,我们在三个管道的子任务上尝试了几种最先进的神经体系结构:多模式证据检索,主张验证和解释生成,并证明,最先进的端到端端到端的多模式检查的表现并不能提供令人满意的外面。据我们所知,我们是第一个建立基准数据集和解决方案的人,以端到端的多模式事实检查和解释生成。数据集,源代码和模型检查点可在https://github.com/vt-nlp/mocheg上找到。
We propose end-to-end multimodal fact-checking and explanation generation, where the input is a claim and a large collection of web sources, including articles, images, videos, and tweets, and the goal is to assess the truthfulness of the claim by retrieving relevant evidence and predicting a truthfulness label (e.g., support, refute or not enough information), and to generate a statement to summarize and explain the reasoning and ruling process. To support this research, we construct Mocheg, a large-scale dataset consisting of 15,601 claims where each claim is annotated with a truthfulness label and a ruling statement, and 33,880 textual paragraphs and 12,112 images in total as evidence. To establish baseline performances on Mocheg, we experiment with several state-of-the-art neural architectures on the three pipelined subtasks: multimodal evidence retrieval, claim verification, and explanation generation, and demonstrate that the performance of the state-of-the-art end-to-end multimodal fact-checking does not provide satisfactory outcomes. To the best of our knowledge, we are the first to build the benchmark dataset and solutions for end-to-end multimodal fact-checking and explanation generation. The dataset, source code and model checkpoints are available at https://github.com/VT-NLP/Mocheg.