论文标题
沮丧的钻石晶格磁铁NIRH $ _2 $ o $ _4 $的电子结构
Electronic structure of the frustrated diamond lattice magnet NiRh$_2$O$_4$
论文作者
论文摘要
$ A $ -Site Spinel Nirh $ _2 $ O $ _4 $是唯一已知的Spin-1钻石晶格磁铁的实现,预计将托管受沮丧的最近和下一个邻居交换以及轨道变性的非常规磁现象。先前的作品没有发现磁性的迹象,但发现了一个间隙的分散磁激励,表明可能的价键磁接地状态。但是,许多竞争性低能量的自由度和有限的经验微观限制的存在使进一步的分析变得复杂。在这里,我们执行共振非弹性X射线散射(RIX)和X射线吸收光谱(XAS),以表征NIRH $ _2 $ o $ $ $ _4 $的局部电子结构。 RIXS数据可以由单离子模型部分描述,用于四面体协调的Ni $^{2+} $,并指示将$ T_2 $ ORBITALS拆分为高能量轨道轨道和低能量新能量的四方畸变$ΔT_2\!= \!70 $ MEV。我们确定了与RH-NI两次激发一致的RIXS光谱的功能,表明由NIRH $ _2 $ o $ $ _4 $介导的强大金属金属杂交介导。我们还通过着装晶体场激发的声子外观来确定电子音波耦合的特征。这些结果建立了与NIRH $ _2 $ o $ $ _4 $中磁性相关的关键能量尺度,并进一步证明了共价和晶格动力学在控制$ A $ -Site Spinels的磁接地状态方面起着重要作用。
The $A$-site spinel NiRh$_2$O$_4$ is the only known realization of a spin-1 diamond lattice magnet and is predicted to host unconventional magnetic phenomena driven by frustrated nearest and next-nearest neighbor exchange as well as orbital degeneracy. Previous works found no sign of magnetic order but found a gapped dispersive magnetic excitation indicating a possible valence bond magnetic ground state. However, the presence of many competing low energy degrees of freedom and limited empirical microscopic constraints complicates further analysis. Here, we carry out resonant inelastic x-ray scattering (RIXS) and x-ray absorption spectroscopy (XAS) to characterize the local electronic structure of NiRh$_2$O$_4$. The RIXS data can be partly described by a single-ion model for tetrahedrally coordinated Ni$^{2+}$ and indicates a tetragonal distortion $Δt_2\!=\!70$ meV that splits the $t_2$ orbitals into a high energy orbital singlet and lower energy orbital doublet. We identify features of the RIXS spectra that are consistent with a Rh-Ni two-site excitation indicating strong metal-metal hybridization mediated by oxygen in NiRh$_2$O$_4$. We also identify signatures of electron-phonon coupling through the appearance of phonon sidebands that dress crystal field excitations. These results establish the key energy scales relevant to the magnetism in NiRh$_2$O$_4$ and further demonstrate that covalency and lattice dynamics play essential roles in controlling the magnetic ground states of $A$-site spinels.