论文标题
正方形类似物上某些线性二氧甘氨酸方程的系统
A system of certain linear Diophantine equations on analogs of squares
论文作者
论文摘要
这项研究调查了整数的元组$(k,\ ell,m)的存在,使得所有$ k $,$ \ ell $,$ m $,$ k+\ ell $,$ \ ell+m $,$ \ m $,$ k+k $,$ k+\+\ ell+m $ \ rfloor $ for $ n \geqα^{ - 1/2} $和$ \ lfloor x \ rfloor $表示$ x $的整数部分。我们表明,$ t(α)$是所有此类元素的集合,对于(0,1)\ cap \ mathbb {q} $而言,所有$α\对于所有$α\ is in(0,1)\ cap \ mathbb {q} $,而几乎所有$α\ in(0,1)$在Lebesgue Mesuare的意义上。此外,我们表明,如果存在$α> 0 $,则$ t(α)$是有限的,那么就没有完美的Euler砖。我们还检查了$ \lceilαn^2 \ rceil $ for $ n \ in \ mathbb {n} $的所有整数集。
This study investigates the existence of tuples $(k, \ell, m)$ of integers such that all of $k$, $\ell$, $m$, $k+\ell$, $\ell+m$, $m+k$, $k+\ell+m$ belong to $S(α)$, where $S(α)$ is the set of all integers of the form $\lfloor αn^2 \rfloor$ for $n\geq α^{-1/2}$ and $\lfloor x\rfloor$ denotes the integer part of $x$. We show that $T(α)$, the set of all such tuples, is infinite for all $α\in (0,1)\cap \mathbb{Q}$ and for almost all $α\in (0,1)$ in the sense of the Lebesgue measure. Furthermore, we show that if there exists $α>0$ such that $T(α)$ is finite, then there is no perfect Euler brick. We also examine the set of all integers of the form $\lceil αn^2 \rceil$ for $n\in \mathbb{N}$.