论文标题
通过潜在地图高斯流程进行多保真多尺度裂缝模型的数据驱动校准
Data-Driven Calibration of Multi-Fidelity Multiscale Fracture Models via Latent Map Gaussian Process
论文作者
论文摘要
具有微观毛孔的金属合金的断裂模型取决于多尺度损伤模拟,这些损伤模拟通常忽略了孔隙率的制造诱导的空间变化。由于宏观零件中显式建模的微观结构的显式建模,因此进行了简化。为了应对这一挑战并打开了多尺度材料的裂缝感知设计的门,我们提出了一个数据驱动的框架,该框架将机械性还原模型(ROM)与基于随机过程的校准方案集成在一起。我们的ROM通过使用稳定的损伤算法并系统地通过聚类来系统地降低自由度,从而极大地加速了直接数值模拟(DNS)。由于聚类会影响局部应变场,因此会影响断裂反应,因此我们通过基于潜在地图高斯过程(LMGPS)构建多保真随机过程来校准ROM。特别是,我们使用LMGP来校准ROM的损伤参数,这是微观结构和聚类(即保真度)级别的函数,以使ROM忠实地替代DNS。我们证明了我们的框架在预测具有空间变化孔隙率的多尺度金属成分的损伤行为方面的应用。我们的结果表明,微结构孔隙率可以显着影响宏观成分的性能,因此必须在设计过程中考虑。
Fracture modeling of metallic alloys with microscopic pores relies on multiscale damage simulations which typically ignore the manufacturing-induced spatial variabilities in porosity. This simplification is made because of the prohibitive computational expenses of explicitly modeling spatially varying microstructures in a macroscopic part. To address this challenge and open the doors for fracture-aware design of multiscale materials, we propose a data-driven framework that integrates a mechanistic reduced-order model (ROM) with a calibration scheme based on random processes. Our ROM drastically accelerates direct numerical simulations (DNS) by using a stabilized damage algorithm and systematically reducing the degrees of freedom via clustering. Since clustering affects local strain fields and hence the fracture response, we calibrate the ROM by constructing a multi-fidelity random process based on latent map Gaussian processes (LMGPs). In particular, we use LMGPs to calibrate the damage parameters of an ROM as a function of microstructure and clustering (i.e., fidelity) level such that the ROM faithfully surrogates DNS. We demonstrate the application of our framework in predicting the damage behavior of a multiscale metallic component with spatially varying porosity. Our results indicate that microstructural porosity can significantly affect the performance of macro components and hence must be considered in the design process.