论文标题
在独立级联模型中推断谣言的来源
Inference of a Rumor's Source in the Independent Cascade Model
论文作者
论文摘要
我们考虑了所谓的独立级联模型,用于谣言传播或由Kempe等人普及的流行过程。在此模型中,网络中的一小部分节点是谣言的来源。在离散的时间步骤中,每个概率$ p $都会告知每个未知的邻居“感染”其每个不知情的邻居。尽管文献中研究了此过程的许多方面,但对推论问题的了解却少:鉴于网络中的许多感染节点,我们可以学习谣言的来源吗?在流行病学的背景下,这个问题通常称为患者零问题。它属于更广泛的问题,其目标是推断基础扩散模型的参数,例如,例如,Lokhov [Neurips'16]或Mastakouri等。 [Neurips'20]。 在这项工作中,我们为谣言的来源提供了最大似然估计器,鉴于该过程的快照是在$ t $ steps之后的一组活动节点$ x $方面的快照。我们的结果表明,对于无周期图,可能性估计器作为函数$ t $进行了非平凡的相变。我们为两个杰出的无环网络(即$ d $的树木和加尔顿 - 瓦特森树)提供了严格的分析,并从经验上验证了我们的启发式方法在各种通用网络中都可以很好地工作。
We consider the so-called Independent Cascade Model for rumor spreading or epidemic processes popularized by Kempe et al.\ [2003]. In this model, a small subset of nodes from a network are the source of a rumor. In discrete time steps, each informed node "infects" each of its uninformed neighbors with probability $p$. While many facets of this process are studied in the literature, less is known about the inference problem: given a number of infected nodes in a network, can we learn the source of the rumor? In the context of epidemiology this problem is often referred to as patient zero problem. It belongs to a broader class of problems where the goal is to infer parameters of the underlying spreading model, see, e.g., Lokhov [NeurIPS'16] or Mastakouri et al. [NeurIPS'20]. In this work we present a maximum likelihood estimator for the rumor's source, given a snapshot of the process in terms of a set of active nodes $X$ after $t$ steps. Our results show that, for cycle-free graphs, the likelihood estimator undergoes a non-trivial phase transition as a function $t$. We provide a rigorous analysis for two prominent classes of acyclic network, namely $d$-regular trees and Galton-Watson trees, and verify empirically that our heuristics work well in various general networks.