论文标题
弥漫地图指导无监督的生成对抗网络,用于SVBRDF估计
Diffuse Map Guiding Unsupervised Generative Adversarial Network for SVBRDF Estimation
论文作者
论文摘要
在现实世界中重建材料一直是计算机图形中的一个困难问题。准确地重建现实世界中的材料在现实渲染领域至关重要。传统上,计算机图形中的材料由艺术家绘制,然后通过坐标转换映射到几何模型上,最后用渲染引擎渲染以获取逼真的材料。对于不透明的对象,该行业通常使用基于物理的双向反射分布函数(BRDF)渲染模型进行材料建模。常用的基于物理的渲染模型是Cook-Torrance BRDF,迪士尼BRDF。在本文中,我们使用Cook-Torrance模型重建材料。 SVBRDF材料参数包括正常,扩散,镜面和粗糙度。本文介绍了基于生成对抗网络(GAN)的漫射图指导材料估计方法。此方法可以使用手机拍摄的几张图片来预测具有全球功能的合理SVBRDF地图。本文的主要贡献是:1)我们预处理少数输入图片,以产生大量的非重复图片,以减少过度拟合。 2)我们使用一种新颖的方法直接获得具有全球特征的猜测漫射图,该图为训练过程提供了更多的先前信息。 3)我们改进了发电机的网络体系结构,以便它可以生成正常地图的精细细节,并减少生成过度固定普通映射的可能性。本文中使用的方法可以在不使用数据集培训的情况下获得先验知识,从而大大减少了材料重建的困难,并节省了很多时间来生成和校准数据集。
Reconstructing materials in the real world has always been a difficult problem in computer graphics. Accurately reconstructing the material in the real world is critical in the field of realistic rendering. Traditionally, materials in computer graphics are mapped by an artist, then mapped onto a geometric model by coordinate transformation, and finally rendered with a rendering engine to get realistic materials. For opaque objects, the industry commonly uses physical-based bidirectional reflectance distribution function (BRDF) rendering models for material modeling. The commonly used physical-based rendering models are Cook-Torrance BRDF, Disney BRDF. In this paper, we use the Cook-Torrance model to reconstruct the materials. The SVBRDF material parameters include Normal, Diffuse, Specular and Roughness. This paper presents a Diffuse map guiding material estimation method based on the Generative Adversarial Network(GAN). This method can predict plausible SVBRDF maps with global features using only a few pictures taken by the mobile phone. The main contributions of this paper are: 1) We preprocess a small number of input pictures to produce a large number of non-repeating pictures for training to reduce over-fitting. 2) We use a novel method to directly obtain the guessed diffuse map with global characteristics, which provides more prior information for the training process. 3) We improve the network architecture of the generator so that it can generate fine details of normal maps and reduce the possibility to generate over-flat normal maps. The method used in this paper can obtain prior knowledge without using dataset training, which greatly reduces the difficulty of material reconstruction and saves a lot of time to generate and calibrate datasets.