论文标题

$ c^\ infty $ -Manifolds与骨骼差异学

$C^\infty$-manifolds with skeletal diffeology

论文作者

Kihara, Hiroshi

论文摘要

我们制定和研究$ d $ - 骨骼差异的概念,该概述概括了电线差异学的概念,引入了$ d $ coskeletal diffeology的双重概念。我们首先表明,paracompact有限维$ c^\ infty $ -manifolds $ m_d $带有$ d $ - 骨骼差异学继承了良好的拓扑和$ m $的光滑paracrocactness。然后,我们研究$ M_D $的病理学。最重要的是,我们证明了以下内容:对于$ d <{\ rm dim} \ m $,每个沉浸式$ f:m \ longrightArrow n $在差异空间$ \ dcal(m_d,n_d,n_d,n_d)$ smotive Maps中隔离,$ d $ d $ d $ d $ - 约束的平滑同型$ m_d $是不可能的。

We formulate and study the notion of $d$-skeletal diffeology, which generalizes that of wire diffeology, introducing the dual notion of $d$-coskeletal diffeology. We first show that paracompact finite-dimensional $C^\infty$-manifolds $M_d$ with $d$-skeletal diffeology inherit good topologies and smooth paracompactness from $M$. We then study the pathology of $M_d$. Above all, we prove the following: For $d<{\rm dim}\ M$, every immersion $f:M\longrightarrow N$ is isolated in the diffeological space $\dcal(M_d, N_d)$ of smooth maps and the $d$-dimensional smooth homotopy group of $M_d$ is uncountable.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源