论文标题

一维规定的曲率方程式通过强最大原理的最佳规律性结果

Optimal regularity results for the one-dimensional prescribed curvature equation via the strong maximum principle

论文作者

Lopez-Gomez, Julian, Omari, Pierpaolo

论文摘要

强大的最大原理的精致版本已被证明是一类二阶的普通微分方程,并可能是不连续的非单调性非线性。然后,利用该工具,洛佩兹·戈梅斯和奥马里最近建立的一些最佳规律性结果,用于通过一维曲率算子驱动的非自主式准线性方程的有界变化溶液,通过接纳一般规定的弯曲和结合一般边界条件,从而显着改善了一维曲率操作员。这里开发的新方法对我们以前的论文中提出的假设产生了一种新的,更深入的解释,同时阐明了它们的含义,并使他们完全透明地与强大的最大原则保持联系。

A refined version of the strong maximum principle is proven for a class of second order ordinary differential equations with possibly discontinuous non-monotone nonlinearities. Then, exploiting this tool, some optimal regularity results recently established by Lopez-Gomez and Omari, for the bounded variation solutions of non-autonomous quasilinear equations driven by the one-dimensional curvature operator, are substantially improved by admitting general prescribed curvatures and by incorporating general boundary conditions. The new approach developed here yields a new, deeper, interpretation of the assumptions introduced in our previous papers, simultaneously clarifying their meaning and making fully transparent their connection with the strong maximum principle.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源