论文标题

使用高斯工艺和逐步精致的实时轨迹计划进行自动驾驶

Real-Time Trajectory Planning for Autonomous Driving with Gaussian Process and Incremental Refinement

论文作者

Jie, Cheng, Yingbing, Chen, Qingwen, Zhang, Lu, Gan, Ming, Liu

论文摘要

动态环境中的实时色素动力轨迹计划对于自动驾驶来说是至关重要的但具有挑战性的。在这封信中,我们通过迭代和增量路径速度优化提出了一个有效的轨迹计划系统,用于在复杂的动态场景中进行自动驾驶。利用计划问题的解耦结构,基于高斯过程的路径计划者首先在Frenét框架中生成连续的弧长参数化路径,考虑到静态障碍物避免和曲率约束。从理论上讲,我们证明这是众所周知的混蛋最佳解决方案的良好概括。引入了一种有效的S-T图搜索方法,以在处理动态环境的生成路径上找到一个速度配置文件。最后,逐步和迭代地对路径和速度进行了优化,以确保动力学可行性。具有静态障碍物和动态试剂的各种模拟场景验证了我们提出的方法的有效性和鲁棒性。实验结果表明,我们的方法可以以20 Hz的速度运行。源代码作为开源软件包发布。

Real-time kinodynamic trajectory planning in dynamic environments is critical yet challenging for autonomous driving. In this letter, we propose an efficient trajectory planning system for autonomous driving in complex dynamic scenarios through iterative and incremental path-speed optimization. Exploiting the decoupled structure of the planning problem, a path planner based on Gaussian process first generates a continuous arc-length parameterized path in the Frenét frame, considering static obstacle avoidance and curvature constraints. We theoretically prove that it is a good generalization of the well-known jerk optimal solution. An efficient s-t graph search method is introduced to find a speed profile along the generated path to deal with dynamic environments. Finally, the path and speed are optimized incrementally and iteratively to ensure kinodynamic feasibility. Various simulated scenarios with both static obstacles and dynamic agents verify the effectiveness and robustness of our proposed method. Experimental results show that our method can run at 20 Hz. The source code is released as an open-source package.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源