论文标题
诱导同质形态和Atsuji超空间
Induced Homeomorphism and Atsuji Hyperspaces
论文作者
论文摘要
鉴于均匀同构度量公式空间$ x $和$ y $,因此证明了Hyperspaces $ c(x)$和$ c(y)$是同型同构的,其中$ c(x)$表示所有非空的封闭子集的收集$ x $,并且与hausdorff距离一样。杰拉尔德·啤酒(Gerald Beer)证明,当$ x $是紧凑或均匀离散时,超空间$ c(x)$是atsuji。 Atsuji空间是紧凑的度量空间以及统一离散空间的概括。在本文中,我们调查了$ x $是atsuji时的空间$ c(x)$,并且获得了一类$ c(x)$的Atsuji子空间。使用获得的结果,获得了Atsuji空间上连续地图的一些固定点结果。
Given uniformly homeomorphic metric spaces $X$ and $Y$, it is proved that the hyperspaces $C(X)$ and $C(Y)$ are uniformly homeomorphic, where $C(X)$ denotes the collection of all nonempty closed subsets of $X$, and is endowed with Hausdorff distance. Gerald Beer has proved that the hyperspace $C(X)$ is Atsuji when $X$ is either compact or uniformly discrete. An Atsuji space is a generalization of compact metric spaces as well as of uniformly discrete spaces. In this article, we investigate the space $C(X)$ when $X$ is Atsuji, and a class of Atsuji subspaces of $C(X)$ is obtained. Using the obtained results, some fixed point results for continuous maps on Atsuji spaces are obtained.