论文标题
无监督的差异学习,用于嘈杂的刚性图像对齐
Unsupervised Difference Learning for Noisy Rigid Image Alignment
论文作者
论文摘要
刚性图像对齐是计算机视觉中的一项基本任务,而传统算法对噪声或耗时太敏感。根据空间变压器网络开发的最新无监督图像对准方法在干净的图像上表现出改善的性能,但由于其对像素值比较的严重依赖,因此无法在嘈杂的图像上实现令人满意的性能。为了处理此类具有挑战性的应用程序,我们报告了一种新的无监督差异学习(UDL)策略,并将其应用于严格的图像对齐方式。 UDL利用回归任务的定量属性,并将原始的无监督问题转换为伪监督问题。在新的基于UDL的图像对齐管道下,可以在清洁和嘈杂的图像上准确估算旋转,然后可以轻松地求解翻译。自然和冷冻EM图像的实验结果证明了我们基于UDL的无监督刚性图像比对方法的功效。
Rigid image alignment is a fundamental task in computer vision, while the traditional algorithms are either too sensitive to noise or time-consuming. Recent unsupervised image alignment methods developed based on spatial transformer networks show an improved performance on clean images but will not achieve satisfactory performance on noisy images due to its heavy reliance on pixel value comparations. To handle such challenging applications, we report a new unsupervised difference learning (UDL) strategy and apply it to rigid image alignment. UDL exploits the quantitative properties of regression tasks and converts the original unsupervised problem to pseudo supervised problem. Under the new UDL-based image alignment pipeline, rotation can be accurately estimated on both clean and noisy images and translations can then be easily solved. Experimental results on both nature and cryo-EM images demonstrate the efficacy of our UDL-based unsupervised rigid image alignment method.