论文标题
光谱域光学相干断层扫描的量子Wiener-khinchin定理
Quantum Wiener-Khinchin theorem for spectral-domain optical coherence tomography
论文作者
论文摘要
Wiener-khinchin定理,可以在许多学科中使用时间过程的自相关函数具有频谱强度给出的光谱分解。但是,基于Wiener-khinchin定理的量子对应物的应用,该应用在时间能量之间提供了两次波函数的自由度之间的翻译仍然相对尚未探索。在这里,我们使用量子Wiener-khinchin定理(QWKT)来指出,可以通过使傅立叶变换来连接两光子的关节光谱强度和两光子时间信号的互相关。数学定义的QWKT在频率分辨的检测辅助下进行了频率输入的两光量Hong-Ou-mandel(HOM)干扰。我们将此方法应用于光谱域量子光学相干断层扫描,该量子层相干性断层扫描中检测到透明样品中厚度诱导的光学延迟,并表明我们的方法足以在广泛的动态范围内实现极大的优势,并在传统的HOM hom hom terfertefemementric方案中捕获时间。这些结果可能会显着促进QWKT用于量子信息处理和量子干涉测量光谱法。
Wiener-Khinchin theorem, the fact that the autocorrelation function of a time process has a spectral decomposition given by its power spectrum intensity, can be used in many disciplines. However, the applications based on a quantum counterpart of Wiener-Khinchin theorem that provides a translation between time-energy degrees of freedom of biphoton wavefunction still remains relatively unexplored. Here, we use a quantum Wiener-Khinchin theorem (QWKT) to state that two-photon joint spectral intensity and the cross-correlation of two-photon temporal signal can be connected by making a Fourier transform. The mathematically-defined QWKT is experimentally demonstrated in frequency-entangled two-photon Hong-Ou-Mandel (HOM) interference with the assistance of spectrally-resolved detection. We apply this method to spectral-domain quantum optical coherence tomography that detects thickness-induced optical delays in a transparent sample, and show that our method suffices to achieve great advantages in measurement precision within a wide dynamic range and capturing time over the conventional HOM interferometric schemes. These results may significantly facilitate the use of QWKT for quantum information processing and quantum interferometric spectroscopy.