论文标题

坡度的半可见性和正锥

Slope Semistability and Positive cones of Grassmann bundles

论文作者

Misra, Snehajit, Ray, Nabanita

论文摘要

让$ e $成为平滑复杂的投影型$ x $的等级$ r $的矢量捆绑包。在本文中,我们计算了Grassmann Bundle $ gr_x(k,e)中的除数的nef和pseudoeffeffection锥,$ k $ k $ - 二维子空间$ e $,其中$ 1 \ leq k \ leq leq等级(e)$,在$ x $ x $ x $ y上的假设上以及$ e $ e $ e $ e。特别是,我们表明nef锥和$ gr_x(k,e)$ cone的伪填充锥,并且仅当$ e $是$ x $的斜率半固定捆绑包,$ c_2(end(e))= 0 $。我们还讨论了$ gr_x(k,e)$上的通用商捆绑包$ q_k $的nef nef和empleness。

Let $E$ be a vector bundle of rank $r$ on a smooth complex projective variety $X$. In this article, we compute the nef and pseudoeffective cones of divisors in the Grassmann bundle $Gr_X(k,E)$ parametrizing $k$-dimensional subspaces of the fibers of $E$, where $1\leq k \leq rank(E)$, under assumptions on $X$ as well as on the vector bundle $E$. In particular, we show that nef cone and the pseudoeffective cone of $Gr_X(k,E)$ coincide if and only if $E$ is a slope semistable bundle on $X$ with $c_2(End(E))=0$. We also discuss about the nefness and ampleness of the universal quotient bundle $Q_k$ on $Gr_X(k,E)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源