论文标题

减少了泰特·沙法雷维奇集团

Reduced Tate-Shafarevich group

论文作者

Morimura, Hayato

论文摘要

我们证明了一种通用椭圆形的calabi-yau的重建定理,就căldăraru而言,$ 3 $ folds。从我们的论点来看,当且仅当它们的通用纤维是派生的等值时,因此,两个通用的椭圆形的calabi-yau $ 3 $ folds在基础上是等于等效的线性。作为应用程序,我们对Knapp-Scheidegger-Schimannek提出的猜想给出了肯定的答案。也就是说,对于每一对椭圆形的calabi-yau $ 3 $ folds,我们证明它们共享相对的雅各布,并且是$ p^2 $ - 固定派生的等值。

We prove a sort of reconstruction theorem for generic elliptic Calabi-Yau $3$-folds in the sense of Căldăraru. From our argument it follows that two generic elliptic Calabi-Yau $3$-folds are derived-equivalent linear over the base if and only if their generic fibers are derived-equivalent. As an application, we give affirmative answers to the conjectures raised by Knapp-Scheidegger-Schimannek. Namely, for each pair of elliptic Calabi-Yau $3$-folds in their list we prove that they share the relative Jacobian and are $P^2$-linear derived-equivalent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源