论文标题

纳迪尔外部地理为中心姿势预测的深度学习合奏框架

A Deep Learning Ensemble Framework for Off-Nadir Geocentric Pose Prediction

论文作者

Sun, Christopher, Sharma, Jai, Maiti, Milind

论文摘要

加速自然灾害响应的计算方法包括变更检测,地图对齐和视觉辅助导航。当前的软件仅在接近nadir图像上发挥最佳作用,尽管外部图像通常是自然灾害之后的第一个信息来源。在上述任务中使用外部图像需要计算地理姿势,这是对重力的航空车辆的空间取向。这项研究提出了一个深度学习的整体框架,以使用5,923个近纳迪尔和纳迪尔RGB卫星图像进行全球城市的图像来预测中心姿势。首先,U-NET完全卷积神经网络预测了RGB图像的地面高度掩模的像素。然后,将高程面膜与RGB图像串联,以形成四通道输入,以预测方向角度和放大量表。 R2 = 0.917的性能精度显着胜过以前的方法。此外,通过有监督的插值进行异常删除,并对高程面具进行灵敏度分析以评估数据功能的实用性,从而激发了未来的特征工程途径。本研究中建造的高准确软件有助于映射和导航程序,以有效灾难响应以挽救生命。

Computational methods to accelerate natural disaster response include change detection, map alignment, and vision-aided navigation. Current software functions optimally only on near-nadir images, though off-nadir images are often the first sources of information following a natural disaster. The use of off-nadir images for the aforementioned tasks requires the computation of geocentric pose, which is an aerial vehicle's spatial orientation with respect to gravity. This study proposes a deep learning ensemble framework to predict geocentric pose using 5,923 near-nadir and off-nadir RGB satellite images of cities worldwide. First, a U-Net Fully Convolutional Neural Network predicts the pixel-wise above-ground elevation mask of the RGB images. Then, the elevation masks are concatenated with the RGB images to form four-channel inputs fed into a second convolutional model, which predicts orientation angle and magnification scale. A performance accuracy of R2=0.917 significantly outperforms previous methodologies. In addition, outlier removal is performed through supervised interpolation, and a sensitivity analysis of elevation masks is conducted to gauge the usefulness of data features, motivating future avenues of feature engineering. The high-accuracy software built in this study contributes to mapping and navigation procedures for effective disaster response to save lives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源