论文标题

端到端语音翻译的非参数域的适应

Non-Parametric Domain Adaptation for End-to-End Speech Translation

论文作者

Du, Yichao, Wang, Weizhi, Zhang, Zhirui, Chen, Boxing, Xu, Tong, Xie, Jun, Chen, Enhong

论文摘要

端到端语音翻译(E2E-ST)由于其误差传播的潜力,较低的延迟和较少的参数而受到了越来越多的关注。但是,基于神经的方法对此任务的有效性受到可用培训语料库的严重限制,尤其是对于较少或不存在的域中三重障碍培训数据的领域适应性。在本文中,我们提出了一种新型的非参数方法,该方法利用域特异性文本翻译语料库来实现E2E-ST系统的域适应性。为此,我们首先将一个附加的编码器纳入预训练的E2E-ST模型中,以实现文本翻译建模,然后通过在可用的三重态训练数据中减少通讯员表示不匹配来统一解码器的输出表示形式,以实现文本和语音翻译任务。在域适应过程中,引入了k-nearest-neighbor(KNN)分类器,以使用特定于域特定的文本翻译语料库构建的外部数据存储库来生成最终的翻译分布,而采用了通用输出表示形式来执行相似性搜索。 Europarl-St基准的实验表明,仅涉及内域文本翻译数据时,我们提出的方法在所有翻译方向上平均将基线显着提高了基线,即使表现出强大的强度内域微调方法。

End-to-End Speech Translation (E2E-ST) has received increasing attention due to the potential of its less error propagation, lower latency, and fewer parameters. However, the effectiveness of neural-based approaches to this task is severely limited by the available training corpus, especially for domain adaptation where in-domain triplet training data is scarce or nonexistent. In this paper, we propose a novel non-parametric method that leverages domain-specific text translation corpus to achieve domain adaptation for the E2E-ST system. To this end, we first incorporate an additional encoder into the pre-trained E2E-ST model to realize text translation modelling, and then unify the decoder's output representation for text and speech translation tasks by reducing the correspondent representation mismatch in available triplet training data. During domain adaptation, a k-nearest-neighbor (kNN) classifier is introduced to produce the final translation distribution using the external datastore built by the domain-specific text translation corpus, while the universal output representation is adopted to perform a similarity search. Experiments on the Europarl-ST benchmark demonstrate that when in-domain text translation data is involved only, our proposed approach significantly improves baseline by 12.82 BLEU on average in all translation directions, even outperforming the strong in-domain fine-tuning method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源