论文标题
3d $ \ cal {n} = 2 $ scfts中的超符合不变性和旋转相关器
Superconformal invariants and spinning correlators in 3d $\cal{N}=2$ SCFTs
论文作者
论文摘要
我们在超空空间中构造超符号不变性,这些不变性用于在三个维度中构建一般$ \ cal {n} = 2 $ supercongrionfient Field理论的旋转操作员的3点相关器。我们的系统分析包括这些不变性之间的各种关系,并提供了一组最小的奇偶校验和奇偶校验不变的不变式,这些不变式进一步用于在任何3d $ \ cal {n} = 2 $ scft中构建一般的3点功能。对于保守的(超级)电流,我们在自由野外情况下使用WICK收缩明确计算各种三分函数,并根据构造的奇偶校验 - 甚至不变性表达它们。我们通过示例提供了证据,证明了保守电流的三分函数通常包括两个部分 - 一个奇偶校验 - 从自由理论带来的,而奇偶校验。
We construct superconformal invariants in superspace which are used to build 3-point correlators of spinning operators in general $\cal{N}=2$ superconformal field theories in three dimensions. Our systematic analysis includes various relations between these invariants and provides a minimal set of parity-even and parity-odd invariants which is further used to construct general 3-point functions in any 3d $\cal{N}=2$ SCFT. For conserved (super)currents, we explicitly compute various 3-point functions using Wick contractions in the free field case, and express them in terms of the constructed parity-even invariants. We give evidence through examples for the claim that the 3-point function of conserved currents generally comprises of two parts - a parity-even piece coming from the free theory, and a parity-odd piece.