论文标题
在MRI-LINAC上进行深度学习的失真校正图像重建
Distortion-Corrected Image Reconstruction with Deep Learning on an MRI-Linac
论文作者
论文摘要
磁共振成像(MRI)由于其出色的软组织对比和缺乏电离辐射而越来越多地用于图像引导的放射疗法。然而,由梯度非线性(GNL)引起的几何畸变限制了解剖精度,可能会损害肿瘤治疗的质量。此外,MR采集和重建速度降低了实时图像指导的潜力。在这里,我们演示了一种基于深度学习的方法,该方法可以快速重建来自原始K空间数据的失真校正图像,以实时MR引导放射疗法应用。我们利用可解释的展开网络的最新进展来开发经过失真校正的重建网络(DCRECONNET),该网络(DCRECONNET)应用卷积神经网络(CNN)来学习有效的正常化和对GNL辅助编码的非均匀快速傅立叶变换。 DCRECONNET接受了来自11位健康志愿者的公共MR Brain数据集的培训,该数据集已完全采样和加速技术,包括并行成像(PI)和压缩传感(CS)。 DCRECONNET的性能在幻影和志愿者大脑数据上进行了1.0T MRI-LINAC的测试。用于数值比较的结构相似性(SSIM)和根平方误差(RMSE)来测量DCRECONNET,基于CS和PI的重建图像质量。还报告了每种方法的计算时间。 Phantom和志愿者的结果表明,与基于CS和PI的重建方法相比,DCRECONNET可以更好地保留图像结构。 DCRECONNET在模拟的大脑图像上产生了最高的SSIM(0.95中值)和最低的RMSE(<0.04),其加速度为四倍。 DCRECONNET比迭代的正则重建方法快100倍以上。 DCRECONNET提供快速,几何准确的图像重建,并具有实时MRI引导的放射疗法应用的潜力。
Magnetic resonance imaging (MRI) is increasingly utilized for image-guided radiotherapy due to its outstanding soft-tissue contrast and lack of ionizing radiation. However, geometric distortions caused by gradient nonlinearity (GNL) limit anatomical accuracy, potentially compromising the quality of tumour treatments. In addition, slow MR acquisition and reconstruction limit the potential for real-time image guidance. Here, we demonstrate a deep learning-based method that rapidly reconstructs distortion-corrected images from raw k-space data for real-time MR-guided radiotherapy applications. We leverage recent advances in interpretable unrolling networks to develop a Distortion-Corrected Reconstruction Network (DCReconNet) that applies convolutional neural networks (CNNs) to learn effective regularizations and nonuniform fast Fourier transforms for GNL-encoding. DCReconNet was trained on a public MR brain dataset from eleven healthy volunteers for fully sampled and accelerated techniques including parallel imaging (PI) and compressed sensing (CS). The performance of DCReconNet was tested on phantom and volunteer brain data acquired on a 1.0T MRI-Linac. The DCReconNet, CS- and PI-based reconstructed image quality was measured by structural similarity (SSIM) and root-mean-squared error (RMSE) for numerical comparisons. The computation time for each method was also reported. Phantom and volunteer results demonstrated that DCReconNet better preserves image structure when compared to CS- and PI-based reconstruction methods. DCReconNet resulted in highest SSIM (0.95 median value) and lowest RMSE (<0.04) on simulated brain images with four times acceleration. DCReconNet is over 100-times faster than iterative, regularized reconstruction methods. DCReconNet provides fast and geometrically accurate image reconstruction and has potential for real-time MRI-guided radiotherapy applications.