论文标题

感知系统的监视:确定性,概率和基于学习的故障检测和识别

Monitoring of Perception Systems: Deterministic, Probabilistic, and Learning-based Fault Detection and Identification

论文作者

Antonante, Pasquale, Nilsen, Heath, Carlone, Luca

论文摘要

本文研究了感知系统的运行时监视。感知是机器人技术和自动驾驶系统(例如自动驾驶汽车)高融合应用的关键组成部分。在这些应用中,感知系统的失败可能会使人类生命处于危险之中,并且这些技术的广泛采用需要开发方法来保证和监控安全操作。尽管感知的重要性至关重要,但目前尚无系统级感知监测的正式方法。在本文中,我们在感知系统中正式化了运行时故障检测和识别的问题,并提出了使用诊断图建模诊断信息的框架。然后,我们提供一组确定性,概率和基于学习的算法,这些算法使用诊断图来执行故障检测和识别。此外,我们研究基本限制,并为故障检测和识别结果提供确定性和概率保证。我们通过广泛的实验评估结束了论文,该评估重新创建了LGSVL开源自动驾驶模拟器中的几种现实故障模式,并将建议的系统监视器应用于最先进的自动驾驶软件堆栈(Baidu的Apollo Auto)。结果表明,所提出的系统监测的效果超过了基线,具有预防现实自主驾驶场景中事故的潜力,并且会产生可忽略的计算开销。

This paper investigates runtime monitoring of perception systems. Perception is a critical component of high-integrity applications of robotics and autonomous systems, such as self-driving cars. In these applications, failure of perception systems may put human life at risk, and a broad adoption of these technologies requires the development of methodologies to guarantee and monitor safe operation. Despite the paramount importance of perception, currently there is no formal approach for system-level perception monitoring. In this paper, we formalize the problem of runtime fault detection and identification in perception systems and present a framework to model diagnostic information using a diagnostic graph. We then provide a set of deterministic, probabilistic, and learning-based algorithms that use diagnostic graphs to perform fault detection and identification. Moreover, we investigate fundamental limits and provide deterministic and probabilistic guarantees on the fault detection and identification results. We conclude the paper with an extensive experimental evaluation, which recreates several realistic failure modes in the LGSVL open-source autonomous driving simulator, and applies the proposed system monitors to a state-of-the-art autonomous driving software stack (Baidu's Apollo Auto). The results show that the proposed system monitors outperform baselines, have the potential of preventing accidents in realistic autonomous driving scenarios, and incur a negligible computational overhead.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源