论文标题
睡眠姿势使用运动学数据增强的一声学习框架:内部和体内案例研究
Sleep Posture One-Shot Learning Framework Using Kinematic Data Augmentation: In-Silico and In-Vivo Case Studies
论文作者
论文摘要
睡眠姿势与几种健康状况有关,例如夜间抽筋和更严重的肌肉骨骼问题。但是,临床内睡眠评估通常仅限于生命体征(例如脑波)。具有嵌入式惯性测量单元的可穿戴传感器已用于睡眠姿势分类;尽管如此,以前的作品仅考虑几乎没有(通常四个)姿势,而这些姿势不足以进行晚期临床评估。此外,姿势学习算法通常需要纵向数据收集才能可靠地发挥作用,并且经常在不熟悉临床医生的原始惯性传感器读数上运作。本文提出了一个基于最小的关节角度测量值集的新框架,用于睡眠姿势分类。提出的框架在两个实验管道中的十二个姿势中得到了验证:计算机动画以获取合成的姿势数据,以及使用定制的微型可穿戴传感器的人类参与者飞行员研究。通过融合原始的地理惯性传感器测量,可以计算腕部和踝关节上相对段方向的过滤估计,可以以医学专家可以理解的方式来表征身体的姿势。拟议的睡眠姿势学习框架通过利用一种新型的运动数据增强方法来提供插件的姿势分类,该方法仅需要一个训练示例。此外,还采用了一个新的指标以及数据可视化,以从姿势数据集中提取有意义的见解,证明数据增强方法的附加值,并解释分类性能。所提出的框架在合成数据上达到了有望高达100%的总体准确性,而在实际数据上获得了92.7%的框架,与文献中可获得的最先进的渴望数据的算法相当。
Sleep posture is linked to several health conditions such as nocturnal cramps and more serious musculoskeletal issues. However, in-clinic sleep assessments are often limited to vital signs (e.g. brain waves). Wearable sensors with embedded inertial measurement units have been used for sleep posture classification; nonetheless, previous works consider only few (commonly four) postures, which are inadequate for advanced clinical assessments. Moreover, posture learning algorithms typically require longitudinal data collection to function reliably, and often operate on raw inertial sensor readings unfamiliar to clinicians. This paper proposes a new framework for sleep posture classification based on a minimal set of joint angle measurements. The proposed framework is validated on a rich set of twelve postures in two experimental pipelines: computer animation to obtain synthetic postural data, and human participant pilot study using custom-made miniature wearable sensors. Through fusing raw geo-inertial sensor measurements to compute a filtered estimate of relative segment orientations across the wrist and ankle joints, the body posture can be characterised in a way comprehensible to medical experts. The proposed sleep posture learning framework offers plug-and-play posture classification by capitalising on a novel kinematic data augmentation method that requires only one training example per posture. Additionally, a new metric together with data visualisations are employed to extract meaningful insights from the postures dataset, demonstrate the added value of the data augmentation method, and explain the classification performance. The proposed framework attained promising overall accuracy as high as 100% on synthetic data and 92.7% on real data, on par with state of the art data-hungry algorithms available in the literature.