论文标题

神经Lyapunov可区分的预测控制

Neural Lyapunov Differentiable Predictive Control

论文作者

Mukherjee, Sayak, Drgoňa, Ján, Tuor, Aaron, Halappanavar, Mahantesh, Vrabie, Draguna

论文摘要

我们使用具有概率Lyapunov的稳定性保证的可区分编程框架提出了基于学习的预测控制方法。神经Lyapunov可区分的预测控制(NLDPC)通过构造包含系统动态,状态和输入约束的计算图以及必要的Lyapunov认证约束来学习策略,然后使用自动差异化来更新神经策略参数。结合起来,我们的方法共同学习了Lyapunov的功能,该功能通过稳定的动态证明了状态空间区域。我们还提供了基于抽样的统计保证,用于从初始条件的分布中培训NLDPC。我们的离线培训方法为经典的显式模型预测控制解决方案提供了一种计算高效且可扩展的替代方案。我们通过模拟来证实所提出的方法的优势,以稳定双集成器模型并以控制飞机模型的示例。

We present a learning-based predictive control methodology using the differentiable programming framework with probabilistic Lyapunov-based stability guarantees. The neural Lyapunov differentiable predictive control (NLDPC) learns the policy by constructing a computational graph encompassing the system dynamics, state and input constraints, and the necessary Lyapunov certification constraints, and thereafter using the automatic differentiation to update the neural policy parameters. In conjunction, our approach jointly learns a Lyapunov function that certifies the regions of state-space with stable dynamics. We also provide a sampling-based statistical guarantee for the training of NLDPC from the distribution of initial conditions. Our offline training approach provides a computationally efficient and scalable alternative to classical explicit model predictive control solutions. We substantiate the advantages of the proposed approach with simulations to stabilize the double integrator model and on an example of controlling an aircraft model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源