论文标题

离散群体的全身代数的歼灭者

Annihilators in the bidual of generalized group algebra of a discrete group

论文作者

Singh, Lav Kumar

论文摘要

简而言之,研究了配备了两种Arens产品的全身群体代数$(\ ell^1(g,\ \ Mathcal a),\ ast)$,其中$ g $是任何离散的群体,$ \ \ mathcal a $ as $ as $ is是一个包含$(\ ell^1 bunter)的Banach代数,该代数包含$(\ ell^1(\ elt)$(\ el^1(\ elt)。我们在代数$ \ ell^1(g,\ mathcal a)^{**} $中给出了一个明确的an灭家族(w.r.t a arens产品),是由$ \ mathbb n $且不在拓扑中心的$ \ mathbb n $引起的。结果,我们还推断出$ \ ell^1(g,\ mathcal a)$并非强烈不规则。

In this short note, the second dual of generalized group algebra $(\ell^1(G,\mathcal A),\ast)$ equipped with both Arens products is investigated, where $G$ is any discrete group and $\mathcal A$ is a Banach algebra containing a complemented algebraic copy of $(\ell^1(\mathbb N),\bullet)$. We give an explicit family of annihilators(w.r.t both the Arens product) in the algebra $\ell^1(G,\mathcal A)^{**}$, arising from non-principal ultrafilters on $\mathbb N$ and which are not in the topological center. As a consequence, we also deduce the fact that $\ell^1(G,\mathcal A)$ is not Strongly Arens irregular.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源