论文标题

神经尖峰活动中动态亚群的灵活贝叶斯聚类

A Flexible Bayesian Clustering of Dynamic Subpopulations in Neural Spiking Activity

论文作者

Wei, Ganchao, Stevenson, Ian H., Wang, Xiaojing

论文摘要

随着神经记录技术的进步,神经科学家现在能够同时记录数百个神经元的尖峰活动,并且需要新的统计方法来了解这种大规模神经种群活动的结构。尽管以前的工作试图通过提取低维的潜在因素来总结已知种群和已知种群之间的神经活动,但在许多情况下,决定独特人群的原因可能不清楚。神经元在解剖位置有所不同,但其细胞类型和反应特性也有所不同。为了识别与神经活动直接相关的人群,我们基于动态泊松因子分析仪(MixDPFA)模型的混合物开发一种聚类方法,该模型的簇数量和每个群集的簇数量和潜在因子的维度为未知参数。为了分析提出的MixDPFA模型,我们提出了马尔可夫链蒙特卡洛(MCMC)算法,以有效地采样其后验分布。通过模拟验证我们提出的MCMC算法,我们发现它可以准确恢复未知参数和模型中的真实聚类,并且对初始集群分配不敏感。然后,我们将提出的MixDPFA模型应用于多区域实验记录,在这里我们发现所提出的方法可以根据其活性来识别新型,可靠的神经元簇,因此可能是神经数据分析的有用工具。

With advances in neural recording techniques, neuroscientists are now able to record the spiking activity of many hundreds of neurons simultaneously, and new statistical methods are needed to understand the structure of this large-scale neural population activity. Although previous work has tried to summarize neural activity within and between known populations by extracting low-dimensional latent factors, in many cases what determines a unique population may be unclear. Neurons differ in their anatomical location, but also, in their cell types and response properties. To identify populations directly related to neural activity, we develop a clustering method based on a mixture of dynamic Poisson factor analyzers (mixDPFA) model, with the number of clusters and dimension of latent factors for each cluster treated as unknown parameters. To analyze the proposed mixDPFA model, we propose a Markov chain Monte Carlo (MCMC) algorithm to efficiently sample its posterior distribution. Validating our proposed MCMC algorithm through simulations, we find that it can accurately recover the unknown parameters and the true clustering in the model, and is insensitive to the initial cluster assignments. We then apply the proposed mixDPFA model to multi-region experimental recordings, where we find that the proposed method can identify novel, reliable clusters of neurons based on their activity, and may, thus, be a useful tool for neural data analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源