论文标题

反向时空非局部hirota方程的长期渐近造型,具有衰减的初始值问题:没有孤子

Long-time asymptotics for the reverse space-time nonlocal Hirota equation with decaying initial value problem: Without solitons

论文作者

Peng, Wei-Qi, Chen, Yong

论文摘要

在这项工作中,我们主要考虑反向时空非局部广播方程的库奇问题,而无孤子部门的初始数据迅速衰减。从LAX对开始,我们首先构建反向时空非局部广播方程的基础Riemann-Hilbert问题。此外,使用Deift-Zhou非线性陡峭下降的方法,得出了反向时空非本地Hirota的显式长期渐近物。对于反向时空非局部非局部方程,由于其散射矩阵的对称性与本地hirota方程不同,所以$ \ vartheta(λ_{i})(i = 0,1)$想成为虚构$ t^{\ frac {\ pm im \ vartheta(λ_{i})} {2}}} $,然后非局部hirota方程的渐近行为变得不同。

In this work, we mainly consider the Cauchy problem for the reverse space-time nonlocal Hirota equation with the initial data rapidly decaying in the solitonless sector. Start from the Lax pair, we first construct the basis Riemann-Hilbert problem for the reverse space-time nonlocal Hirota equation. Furthermore, using the approach of Deift-Zhou nonlinear steepest descent, the explicit long-time asymptotics for the reverse space-time nonlocal Hirota is derived. For the reverse space-time nonlocal Hirota equation, since the symmetries of its scattering matrix are different with the local Hirota equation, the $\vartheta(λ_{i})(i=0, 1)$ would like to be imaginary, which results in the $δ_{λ_{i}}^{0}$ contains an increasing $t^{\frac{\pm Im\vartheta(λ_{i})}{2}}$, and then the asymptotic behavior for nonlocal Hirota equation becomes differently.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源