论文标题

综合能源系统的经济模型预测控制:一个多时间尺度框架

Economic model predictive control of integrated energy systems: A multi-time-scale framework

论文作者

Wu, Long, Yin, Xunyuan, Pan, Lei, Liu, Jinfeng

论文摘要

在这项工作中,提出了一个综合经济模型预测控制(CEMPC),以实现独立综合能量系统(IES)的最佳运行。 IESS动力学中存在时间尺度多重性,并使用多时间尺度分解来解决。将整个IE分解为三个减少,中等和快速动力学的降级子系统。随后,开发了包括缓慢的经济模型预测控制(EMPC),中等EMPC和快速EMPC的CEMPC。 EMPC相互交流,以确保决策的一致性。在慢速EMPC中,全局控制目标得到了优化,并且操纵输入明确影响了缓慢的动态。介质EMPC优化了与介质动力学相关的控制目标,并将相应的最佳介质输入应用于IE,而快速EMPC优化了快速动力学相关的目标,并对与快速动态直接相关的操纵输入做出决定。同时,将热舒适度以区域跟踪的形式集成到CEMPC中,以实现更高的自由度,以优先满足电动需求并降低IES的运营成本。此外,开发了基于简化的慢速子系统模型的长期EMPC并将其纳入CEMPC,以确保运行状态适应外部条件的长期预测。最后,通过仿真和与层次实时优化机制进行比较来证明所提出方法的有效性和优势。

In this work, a composite economic model predictive control (CEMPC) is proposed for the optimal operation of a stand-alone integrated energy system (IES). Time-scale multiplicity exists in IESs dynamics is taken into account and addressed using multi-time-scale decomposition. The entire IES is decomposed into three reduced-order subsystems with slow, medium, and fast dynamics. Subsequently, the CEMPC, which includes slow economic model predictive control (EMPC), medium EMPC and fast EMPC, is developed. The EMPCs communicate with each other to ensure consistency in decision-making. In the slow EMPC, the global control objectives are optimized, and the manipulated inputs explicitly affecting the slow dynamics are applied. The medium EMPC optimizes the control objectives correlated with the medium dynamics and applies the corresponding optimal medium inputs to the IES, while the fast EMPC optimizes the fast dynamics relevant objectives and makes a decision on the manipulated inputs directly associated with the fast dynamics. Meanwhile, thermal comfort is integrated into the CEMPC in the form of zone tracking of the building temperature for achieving more control degrees of freedom to prioritize satisfying the electric demand and reducing operating costs of the IES. Moreover, a long-term EMPC based on a simplified slow subsystem model is developed and incorporated into the CEMPC to ensure that the operating state accommodates long-term forecasts for external conditions. Finally, the effectiveness and superiority of the proposed method are demonstrated via simulations and a comparison with a hierarchical real-time optimization mechanism.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源