论文标题
关于korteweg-de vries-kawahara方程的分析性的半径
On the Radius of Analyticity for a Korteweg-de Vries-Kawahara Equation with a Weakly Damping Term
论文作者
论文摘要
我们考虑了Korteweg-de Vries-Kawahara类型方程的Cauchy问题,并在分析Gevrey空间中具有初始数据。通过使用线性,双线性和三线性估计值,我们在分析性的空间中为此问题建立了局部良好性。通过使用近似保护定律,我们将其扩展到全球结果,以至于解决方案的分析性半径均匀地在下面始终以固定的正数为界面。
We consider the Cauchy problem for an equation of Korteweg-de Vries-Kawahara type with initial data in the analytic Gevrey spaces. By using linear, bilinear and trilinear estimates in analytic Bourgain spaces, we establish the local well-posedness for this problem. By using an approximate conservation law, we extend this to a global result in such a way that the radius of analyticity of solutions is uniformly bounded below by a fixed positive number for all time.