论文标题
平等不变的Maxwell-Chern-Simons模型中的涡流
Vortices in a parity-invariant Maxwell-Chern-Simons model
论文作者
论文摘要
在这项工作中,我们提出了一个奇偶校验不变的麦克斯韦 - 切尔尼·苏蒙斯$ u(1)\ times u(1)$型号,并以$ 2+1 $的尺寸加上两个带电的标量字段,并表明它可以容纳有限的能源拓扑涡流。我们描述了模型的主要特征,并为运动方程式找到了明确的数值解决方案,考虑了不同的参数集并分析了一些有趣的特定方案。我们指出,该理论的结构自然源自平等不变性的要求,这种对称是在Chern-Simons理论的背景下很少设想的。另一个独特的方面是,此处发现的涡流的特征是两个整数数字。
In this work we propose a parity-invariant Maxwell-Chern-Simons $U(1) \times U(1)$ model coupled with two charged scalar fields in $2+1$ dimensions, and show that it admits finite-energy topological vortices. We describe the main features of the model and find explicit numerical solutions for the equations of motion, considering different sets of parameters and analyzing some interesting particular regimes. We remark that the structure of the theory follows naturally from the requirement of parity invariance, a symmetry that is rarely envisaged in the context of Chern-Simons theories. Another distinctive aspect is that the vortices found here are characterized by two integer numbers.