论文标题
天文学的经典期间发现技术的统计入门
A Statistical Primer on Classical Period-Finding Techniques in Astronomy
论文作者
论文摘要
我们论文的目的是从统计学家的角度研究经典相位分散最小化(PDM),方差分析(AOV),字符串长度(SL)和Lomb-Scargle(LS)功率统计的特性。我们确认,当数据是恒定函数的扰动时,即在数据中无周期的零假设下,PDM统计量的缩放版本遵循beta分布,AOV统计量遵循F分布,LS功率遵循Chi-Squared分布,并具有两个自由度。但是,SL统计量没有封闭形式的分布。我们通过模拟进一步验证了这些理论分布,并证明这些统计数据的极端值(在一系列试验期间)通常用于周期估计和错误警报概率(FAP)的确定,遵循与单个时期衍生的分布不同的分布。我们强调需要进行多次测试考虑来正确得出FAP界限。但是,实际上,对这些极值统计数据的FAP构成的FAP内置了多次测试控件,例如在一系列试验期间,FAP结合的最大功率统计量是专门得出的。此外,我们发现所有这些方法对于旨在模仿仪器随时间推移的降解或错误校准的异质噪声都是可靠的。最后,我们检查了这些统计数据通过模拟模拟良好的二进制系统的数据检测非恒定周期性功能的能力,并且我们发现AOV统计量具有最大的能力来检测正确的时期,这与实践中观察到的内容一致。
The aim of our paper is to investigate the properties of the classical phase-dispersion minimization (PDM), analysis of variance (AOV), string-length (SL), and Lomb-Scargle (LS) power statistics from a statistician's perspective. We confirm that when the data are perturbations of a constant function, i.e. under the null hypothesis of no period in the data, a scaled version of the PDM statistic follows a beta distribution, the AOV statistic follows an F distribution, and the LS power follows a chi-squared distribution with two degrees of freedom. However, the SL statistic does not have a closed-form distribution. We further verify these theoretical distributions through simulations and demonstrate that the extreme values of these statistics (over a range of trial periods), often used for period estimation and determination of the false alarm probability (FAP), follow different distributions than those derived for a single period. We emphasize that multiple-testing considerations are needed to correctly derive FAP bounds. Though, in fact, multiple-testing controls are built into the FAP bound for these extreme-value statistics, e.g. the FAP bound derived specifically for the maximum LS power statistic over a range of trial periods. Additionally, we find that all of these methods are robust to heteroscedastic noise aimed to mimic the degradation or miscalibration of an instrument over time. Finally, we examine the ability of these statistics to detect a non-constant periodic function via simulating data that mimics a well-detached binary system, and we find that the AOV statistic has the most power to detect the correct period, which agrees with what has been observed in practice.