论文标题
卷积神经网络的动态加权表格方法
A Dynamic Weighted Tabular Method for Convolutional Neural Networks
论文作者
论文摘要
通常,对于表格数据集上的分类任务,通常首选提供支持向量机,随机森林和逻辑回归等传统机器学习(ML)模型。表格数据分别由与实例和特征相对应的行和列组成。过去的研究表明,传统的分类器通常在复杂的表格数据集中产生不令人满意的结果。因此,研究人员试图将强大的卷积神经网络(CNN)用于表格数据集。最近的研究提出了几种技术,例如SupertMl,条件GAN(CTGAN)和表格卷积(TAC),用于将卷积神经网络(CNN)应用于表格数据。这些模型的表现优于传统分类器,并显着提高了表格数据的性能。这项研究介绍了一种新型技术,即动态加权表(DWTM),该方法基于统计技术动态使用特征权重,以将CNN应用于表格数据集。该方法根据其与类标签的关联性强度动态分配权重。每个数据点被转换为图像并馈送到CNN模型。这些功能是根据其重量分配的图像帆布空间。 DWTM是对前面提到的方法的改进,因为它可以动态地实现整个实验设置,而不是使用先前方法中提供的静态配置。此外,它使用了使用特征权重创建图像帆布空间的新颖想法。在本文中,DWTM应用于六个基准的表格数据集,并在所有这些数据集中实现出色的性能(即平均准确度= 95%)。
Traditional Machine Learning (ML) models like Support Vector Machine, Random Forest, and Logistic Regression are generally preferred for classification tasks on tabular datasets. Tabular data consists of rows and columns corresponding to instances and features, respectively. Past studies indicate that traditional classifiers often produce unsatisfactory results in complex tabular datasets. Hence, researchers attempt to use the powerful Convolutional Neural Networks (CNN) for tabular datasets. Recent studies propose several techniques like SuperTML, Conditional GAN (CTGAN), and Tabular Convolution (TAC) for applying Convolutional Neural Networks (CNN) on tabular data. These models outperform the traditional classifiers and substantially improve the performance on tabular data. This study introduces a novel technique, namely, Dynamic Weighted Tabular Method (DWTM), that uses feature weights dynamically based on statistical techniques to apply CNNs on tabular datasets. The method assigns weights dynamically to each feature based on their strength of associativity to the class labels. Each data point is converted into images and fed to a CNN model. The features are allocated image canvas space based on their weights. The DWTM is an improvement on the previously mentioned methods as it dynamically implements the entire experimental setting rather than using the static configuration provided in the previous methods. Furthermore, it uses the novel idea of using feature weights to create image canvas space. In this paper, the DWTM is applied to six benchmarked tabular datasets and it achieves outstanding performance (i.e., average accuracy = 95%) on all of them.