论文标题

手性量规理论中的规格不变性和有限反对者

Gauge Invariance and Finite Counterterms in Chiral Gauge Theories

论文作者

Cornella, Claudia, Feruglio, Ferruccio, Vecchi, Luca

论文摘要

我们得出了恢复手性仪表理论中正规化方案破裂的病房身份所需的有限的一环违反术语。我们的结果是适用于满足一些一般特性的广泛规范的分析表达式。我们采用背景字段方法,该方法可确保量化理论中的背景量规不变性,并专注于具有任意量规组和一般表示中的费米子的可纠正性手性理论。我们的方法可以扩展到涉及标量的理论,例如标准模型,也可以扩展到不可验证的理论(例如SMEFT)。作为一个具体的应用,我们在标准模型的一个循环中,在尺寸正则化和Breitenlohner-Maison-Maison-'t Hooft-Veltman处方处以$γ_5$的价格来制定有限的反术。

We derive the finite one-loop counterterm required to restore the Ward Identities broken by the regularization scheme in chiral gauge theories. Our result is an analytic expression applicable to a wide class of regularizations satisfying a few general properties. We adopt the background field method, which ensures background gauge invariance in the quantized theory, and focus on renormalizable chiral theories with arbitrary gauge group and fermions in general representations. Our approach can be extended to theories involving scalars, such as the Standard Model, or to non-renormalizable theories, such as the SMEFT. As a concrete application, we work out the finite counterterm at one loop in the Standard Model, within dimensional regularization and the Breitenlohner-Maison-'t Hooft-Veltman prescription for $γ_5$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源