论文标题

混合Herz-Hardy空间及其应用的特征

Characterizations of Mixed Herz-Hardy Spaces and their Applications

论文作者

Zhao, Yichun, Wei, Mingquan, Zhou, Jiang

论文摘要

本文的目的是介绍和调查混合均质的Herz-Hardy空间的一些基本特性$ H \ dot {k} _ {\ vec {\ vec {p}}}^{α,q}(\ Mathbb {r}^n)$和非杂种Herz-Hardy Space $ HK _ { Q}(\ Mathbb {r}^n)$。此外,我们为$ h \ dot {k} _ {\ vec {p}}}^{α,q}(\ Mathbb {r}^n)$和$ hk _ {\ vec {\ vec {p}} $ nath an n an n an n an n an n y MATH^n and and and and,我们建立了原子和分子分解。在混合的Herz-Hardy空间上,一类宽类的均等操作员的界限。作为副产品,推导了混合均匀的Herz-Hardy空间的双重空间。

The purpose of this paper is to introduce and investigate some basic properties of mixed homogeneous Herz-Hardy spaces $H\dot{K}_{\vec{p}}^{α, q}(\mathbb{R}^n)$ and mixed non-homogeneous Herz-Hardy spaces $HK_{\vec{p}}^{α, q}(\mathbb{R}^n)$. Furthermore, we establish the atom and molecular decompositions for $H\dot{K}_{\vec{p}}^{α, q}(\mathbb{R}^n)$ and $HK_{\vec{p}}^{α, q}(\mathbb{R}^n)$, by which the boundedness for a wide class of sublinear operators on mixed Herz-Hardy spaces is obtained. As a byproduct, the dual spaces of mixed homogeneous Herz-Hardy spaces are deduced.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源