论文标题
数据驱动的分布式控制以扩展EV集成到电网
Data-driven Distributed Control to Scale EV Integration into Power Grid
论文作者
论文摘要
电动汽车(EV)终于进入了道路上,但是关于漫长的充电时间和对电源发电网格充血的影响的挑战仍未解决。建议的解决方案取决于沟通和严格的计算,并且主要需要实时连接才能进行最佳操作;因此,它们是不可扩展的。借助历史测量数据,EV充电器可以采取更有信息的动作,而主要保持离线。这项研究开发了一种分布式和数据驱动的拥塞检测方法,以及添加剂增加的乘法减少(AIMD)算法以控制分布网格中的质量EV充电。拟议的分布式AIMD算法在公平和拥堵处理方面非常接近理想的AIMD,其沟通需求显着较低。结果可以提供有关如何使用数据来揭示功率网格的内部动力学和结构的关键见解,并有助于开发更先进的数据驱动算法,用于网格集成电源电子控制。
Electric vehicles (EVs) are finally making their way onto the roads, but the challenges concerning long charging times and impact on congestion of the power distribution grid are still not resolved. Proposed solutions depend on heavy communication and rigorous computation and mostly need real-time connectivity for optimal operation; thereby, they are not scalable. With the availability of historical measurement data, EV chargers can take better-informed actions while staying mostly off-line. This study develops a distributed and data-driven congestion detection methodology together with the Additive Increase Multiplicative Decrease (AIMD) algorithm to control mass EV charging in a distribution grid. The proposed distributed AIMD algorithm performs very closely to the ideal AIMD in terms of fairness and congestion handling, and its communication need is significantly low. The results can provide crucial insights on how data can be used to reveal the inner dynamics and structure of the power grid and help develop more advanced data-driven algorithms for grid integrated power electronics control.